\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)

Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)

Và lượng trên tử bé hơn bằng \(ab+bc+ca\)

18 tháng 12 2016

Mình đánh nhầm, dòng cuối cùng là \(a+b+c\)

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

25 tháng 3 2018

  Áp dụng BĐT côsi ta có: 

a² + bc ≥ 2.a√(bc) 

<=> 1/(a² + bc) ≤ 1/(2a√(bc)) -------------(1) 

tương tự vậy: 

1/(b² + ac) ≤ 1/(2b√(ac)) -------------------(2) 

1/(c² + ab) ≤ 1/(2c√(ab)) -------------------(3) 

lấy (1) + (2) + (3) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ 1/(2a√(bc)) + 1/(2b√(ac)) + 1/(2c√(ab)) 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ √(bc)/2abc + √(ac)/2abc + √(ab)/2abc 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ [√(bc) + √(ac) + √(ab) ]/2abc (!) 

Ta chứng minh bổ đề: 

√(ab) + √(bc) + √(ac) ≤ a + b + c 

thật vậy, áp dụng BĐT côsi ta được: 

a + b ≥ 2√(ab) --- (*) 

a + c ≥ 2√(ac) --- (**) 

b + c ≥ 2√(bc) --- (***) 

lấy (*) + (**) + (***) => 2(a + b + c) ≥ 2.[ √(bc) + √(ac) + √(ab) ] 

<=> √(bc) + √(ac) + √(ab) ≤ a + b + c (@) 

từ (!) và (@) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ (a + b + c)/2abc ( Đpcm )

15 tháng 7 2020

Áp dụng AM - GM:

\(\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}};\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ca}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)

Khi đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\)

lấy bút xóa mà xóa hết là khỏe

24 tháng 1 2016

\(botay.com.vn\)

NV
30 tháng 8 2020

\(VT\le\frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}=\frac{1}{2}\left(\frac{1}{\sqrt{ab.ac}}+\frac{1}{\sqrt{ab.bc}}+\frac{1}{\sqrt{ac.bc}}\right)\)

\(VT\le\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

30 tháng 8 2020

bài này có dùng bất đẳng thức cô si ko vậy ạ?

9 tháng 10 2015

\(\frac{1}{a^2+bc}\le\frac{1}{2\sqrt{a^2bc}}=\frac{\sqrt{bc}}{2abc}\)

\(VT\le\frac{\sqrt{bc}+\sqrt{ca}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)

\(\left(\text{bđt }x^2+y^2+z^2\ge xy+yz+zx\right)\)

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện