K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

ta có: \(OM\perp QS\) => \(\widehat{QMO}=90^o\)

\(OB\perp PB\) (vì PB là tiếp tuyến của đường tròn tâm O) => \(\widehat{OBP}=90^o\)

tứ giác OBQM có: \(\widehat{OBQ}+\widehat{OMQ}=180^o\)

mà 2 góc này ở vị trí đối nhau

=> tứ giác OBQM nội tiếp đường tròn

=> \(\widehat{OBM}=\widehat{OQM}\) (vì cùng chắn cung OM nhỏ)(1)

ta lại có: tam giác OAB cân tại O (vì OA=OB=R)

=> \(\widehat{OAB}=\widehat{OBA}\left(2\right)\)

Ta có: \(OA\perp PA\) (vì PA là tiếp tuyến của đường tròn tâm O)

=> \(\widehat{OAP}=90^o\) mà góc OAP +góc OAS =180o(2 góc kề bù)

=> góc OAS =90o

tứ giác OMAS có: \(\widehat{OAS}=\widehat{OMS}\left(=90^o\right)\)

mà 2 goc snày ở vị trí kề nhua cùng nhìn cạnh OS

=> tứ giác OMAS nội tiếp

=> góc OAM = góc OMS(3)

từ (1); (2) và(3) ta có: góc OQM = góc OSM

=> Tam giác OQS cân tại O

=> đường cao OM đồng thời là đường trung tuyến

=> M là trung điểm của QS

hay MQ =MS(ĐPCM)

13 tháng 2 2020

Mik chưa học tứ giác nội tiếp nên ko áp dụng đc

13 tháng 6 2021
Cô ơi, tại sao góc MCO lại bằng góc MDO vậy ạ
18 tháng 12 2023

a: Xét tứ giác OBMA có \(\widehat{OBM}+\widehat{OAM}=90^0+90^0=180^0\)

nên OBMA là tứ giác nội tiếp

=>O,B,M,A cùng thuộc một đường tròn

b: Ta có: ΔOBC cân tại O

mà OM là đường cao

nên OM là phân giác của góc BOC

Xét ΔOBM và ΔOCM có

OB=OC

\(\widehat{BOM}=\widehat{COM}\)

OM chung

Do đó: ΔOBM=ΔOCM

=>\(\widehat{OBM}=\widehat{OCM}\)

mà \(\widehat{OBM}=90^0\)

nên \(\widehat{OCM}=90^0\)

=>MC là tiếp tuyến của (O)

18 tháng 12 2023

loading... a) Gọi D là trung điểm của MO

∆OAM vuông tại A có AD là đường trung tuyến ứng với cạnh huyền OM

⇒ AD = OD = MD = OM : 2   (1)

∆OBM vuông tại B có BD là đường trung tuyến ứng với cạnh huyền OM

⇒ BD = OD = MD = OM : 2   (2)

Từ (1) và (2) ⇒ AD = BD = OD = MD

Vậy A, B, O, M cùng thuộc (D, AD)

b) Xét hai tam giác vuông: ∆OHB và ∆OHC có:

OH là cạnh chung

OB = OC = bán kính

⇒ ∆OHB = ∆OHC (cạnh huyền - cạnh góc vuông)

⇒ ∠HOB = ∠HOC (hai góc tương ứng)

⇒ ∠MOB = ∠MOC

Xét ∆MOB và ∆MOC có:

OM là cạnh chung

∠MOB = ∠MOC (cmt)

OB = OC = bán kính)

⇒ ∆MOB = ∆MOC (c-g-c)

⇒ ∠OBM = ∠OCM (hai góc tương ứng)

⇒ ∠OCM = 90⁰

⇒ MC ⊥ OC

Mà OC là bán kính của (O)

⇒ MC là tiếp tuyến của (O)

5 tháng 4 2020

P M E B A O C

5 tháng 4 2020

a ) Ta có : PA // BC => ^MPE = ^ECB = ^PBM  vì PB là tiếp tuyến của (O)

=> \(\Delta MPE~\Delta MBP\left(g.g\right)\)

\(\Rightarrow\frac{MP}{MB}=\frac{ME}{MP}\Rightarrow MP^2=ME.MB\)

b ) .Ta có MA là tiếp tuyến của (O)

\(\Rightarrow\widehat{MAE}=\widehat{MBA}\Rightarrow\Delta MAE~\Delta MBA\left(g.g\right)\)

\(\Rightarrow\frac{MA}{MB}=\frac{ME}{MA}\Rightarrow MA^2=ME.MB\)

\(\Rightarrow MA^2=MP^2\Rightarrow MA=MP\Rightarrow M\) là trung điểm PA