Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a, Tứ giác AECD có : CEA^=90* ; CDA^=90*
=>CEA^+CDA^=180*
=>AECD nội tiếp
Câu b, Xét tam giác BCD và tam giác ACE , có :
BDC^=CEA^=90*
CBA^=CAE^ ( góc nội tiếp ; góc ở tâm cùng chắn một cung )
=>Tam giác BCD ~ Tam giác ACE
=> BC/AC=CD/CE=BD/AE (1)
Xét tam giác CFB và tam giác CDA , có :
CFB^=CDA^=90*
CBF^=CAD^ (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung )
=>Tam giác CFB ~ tam giác CDA ( g - g )
=>CF/CD=CB/CA=BF/AD (2)
Từ (1) và (2)
=>CD/CE=CF/CD
=>CD^2=CE.CF
Chúc bạn học tốt !
gọi G là giao của tia đối tia CD với AM (ta giả sử cung AC < cung BC)
ý c: từ b suy ra tam giác CDE đồng dạng CFD
=> \(\widehat{ECD}=\widehat{FCD}\)
ta có: \(\widehat{ECD}+\widehat{GCE}=180^o\)
\(\widehat{FCD}+\widehat{GCF}=180^o\)
\(\widehat{GCE}=\widehat{GCF}\)suy ra đccm
ý d: CM IK//AB
Ta có: \(\widehat{FDB}=\widehat{FCB}\)(BDCF nôi tiếp đường tròn)
\(\hept{\begin{cases}\widehat{FCB}+\widehat{FBC}=90^o\\\widehat{DCA}+\widehat{CAD}=90^o\end{cases}}\)
mà \(\widehat{CAD}=\widehat{FBC}\)(cùng chắn cung BC)
\(\Rightarrow\widehat{FCB}=\widehat{DCA}\Rightarrow\widehat{FDB}=\widehat{DCA}\)(1)
Tương tự:
\(\hept{\begin{cases}\widehat{ECA}+\widehat{EAC}=90^o\\\widehat{DCB}+\widehat{DBC}=90^o\end{cases}}\)
mà \(\widehat{EAC}=\widehat{DBC}\)(cùng chắn cung AC)
\(\Rightarrow\widehat{ECA}=\widehat{DCB}\). mà \(\widehat{ECA}=\widehat{EDA}\)(tứ giác ECDA nội tiếp nên 2 góc kia cùng chắn cung AE)
\(\Rightarrow\widehat{DCB}=\widehat{EDA}\)(2)
(1)+(2) => \(\widehat{ACD}+\widehat{BCD}=\widehat{FDB}+\widehat{EDA}\)
\(\Rightarrow\widehat{ICK}=\widehat{FDB}+\widehat{EDA}\)\(\Rightarrow\widehat{ICK}+\widehat{IDK}=\widehat{FDB}+\widehat{EDA}+\widehat{IDK}=180^o\)
suy ra tứ giác IDKC nội tiếp \(\Rightarrow\widehat{CKI}=\widehat{CDI}=\widehat{CAE}=\widehat{CBA}\)
mà góc CKI và góc CBA ở vị trí đồng vị suy ra IK//AB. ta đc đccm.
A B C D O M N K H E F I J T P
a) Ta có: Tứ giác ACBD nội tiếp (O;R) có 2 đường chéo là 2 đường kính vuông góc với nhau.
Nên tứ giác ACBD là hình vuông.
Xét tứ giác ACMH: ^ACM=^ACB=900; ^AHM=900
=> Tứ giác ACMH nội tiếp đường tròn
Do tứ giác ACBD là 1 hình vuông nên ^BCD=1/2.CAD=450
=> ^BCD=^MAN hay ^MCK=^MAK => Tứ giác ACMK nội tiếp đường tròn.
b) Gọi giao điểm của tia AE với tia tiếp tuyến BF là I. AF gặp MH tại J.
Ta có: Điểm E nằm trên (O) có đg kính AB => ^AEB=900
=> \(\Delta\)BEI vuông tại E. Dễ thấy \(\Delta\)BFE cân tại F => ^FEB=^FBE
Lại có: ^FEB+^FEI=900 => ^FBE+^FEI=900. Mà ^FBE+^FIE=900
Nên ^FEI=^FIE => \(\Delta\)EFI cân tại F => EF=IF. Mà EF=BF => BF=IF
Theo hệ quả của ĐL Thales ta có: \(\frac{MJ}{IF}=\frac{HJ}{BF}=\frac{AJ}{AF}\)=> MJ=HJ (Do IF=BF)
=> J là trung điểm của HM => Đpcm.
c) Trên tia đối của tia DB lấy T sao cho DT=CM.
Gọi P là hình chiếu của A xuống đoạn MN.
Dễ dàng c/m \(\Delta\)ACM=\(\Delta\)ADT (c.g.c) => ^CAM=^DAT và AM=AT
mà ^CAM phụ ^MAD => ^DAT+^MAD=900 => ^MAT=900
=> ^MAN=^TAN=1/2.^MAT=450.=> \(\Delta\)MAN=\(\Delta\)TAN (c.g.c)
=> ^AMN=^ATN (2 góc tương ứng) hay ^AMP=^ATD
=> \(\Delta\)APM=\(\Delta\)ADT (Cạnh huyền góc nhọn) => AD=AP (2 cạnh tương ứng).
Mà AD có độ dài không đổi (Vì AD=căn 2 . R) => AP không đổi.
Suy ra khoảng cách từ điểm A đến đoạn MN là không đổi
=> MN tiếp xúc với đường tròn tâm A cố định bán kính AD=căn 2.R.
Vậy...
ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
Sắp đến Tết rùi nè ae.Zui nhểy!Đứa nào đỗ nhớ khao tao nhá!
- Tên: ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ
- Đang học tại: Trường THCS Lập Thạch
- Địa chỉ: Huyện Lập Thạch - Vĩnh Phúc
- Điểm hỏi đáp: 16SP, 0GP
- Điểm hỏi đáp tuần này: 1SP, 0GP
- Thống kê hỏi đáp