\(\in\)(O) kẻ tiếp tuyến d với (O). Lấy M\(\in\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tam giác ABC nhọn nội tiếp (O), các đường cao BD và CE cắt nhau tại H. Cm: a, Các tứ giác ADHE và BCDE nội tiếp. b, \(AE\cdot AB=AC\cdot AD\). c, \(OA\perp DE\). 2. cHO (O;R). Từ điểm M bên ngoài đường tròn kẻ tiếp tuyến MA (A là tiếp điểm), kẻ cát tuyến MNP. Gọi K là trung điểm của NP. Kẻ tiếp tuyến MB (B là tiêếp điểm), kẻ \(AC\perp MB,BD\perp MA,\) h là giao điểm của AC và BD, I là giao điểm...
Đọc tiếp

1. Cho tam giác ABC nhọn nội tiếp (O), các đường cao BD và CE cắt nhau tại H. Cm:

a, Các tứ giác ADHE và BCDE nội tiếp.

b, \(AE\cdot AB=AC\cdot AD\).

c, \(OA\perp DE\).

2. cHO (O;R). Từ điểm M bên ngoài đường tròn kẻ tiếp tuyến MA (A là tiếp điểm), kẻ cát tuyến MNP. Gọi K là trung điểm của NP. Kẻ tiếp tuyến MB (B là tiêếp điểm), kẻ \(AC\perp MB,BD\perp MA,\) h là giao điểm của AC và BD, I là giao điểm của OM và AB. Cm:

a, Tứ giác AMBO nội tiếp.

b, 5 điểm O, K, A, M, B cùng thuộc một đường tròn.

c, \(OI\cdot OM=R^2;OI\cdot IM=IA^2\).

d, Tứ giác OAHB là hình thoi.

e, 3 điểm O, H, M thẳng hàng.

3. Cho (O), từ A ở ngoài đường tròn kẻ 2 tiếp tuyến AB, AC và cát tuyến AMN với đường tròn (với B, C, M, N thuộc đường tròn và AM < AN). Gọi I là giao điểm thứ 2 của đường thẳng CE với đường tròn), E là trung điểm của MN. Cm:

a. 4 điểm A, O, E, C cùng nằm trên một đường tròn.

b, \(\widehat{AOC}=\widehat{BIC}\).

c, BI // MN.

Giúp mk với chiều mai mk học rồi

0
1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
26 tháng 3 2018

a) Do C thuộc nửa đường tròn nên \(\widehat{ACB}=90^o\) hay AC vuông góc MB.

Xét tam giác vuông AMB có đường cao AC nên áp dụng hệ thức lượng ta có:

\(BC.BM=AB^2=4R^2\)

b) Xét tam giác MAC vuông tại C có CI là trung tuyến ứng với cạnh huyền nên IM = IC = IA

Vậy thì \(\Delta ICO=\Delta IAO\left(c-c-c\right)\)

\(\Rightarrow\widehat{ICO}=\widehat{IAO}=90^o\)

Hay IC là tiếp tuyến tại C của nửa đường tròn.

c) Xét tam giác vuông AMB có đường cao AC, áp dụng hệ thức lượng ta có:

\(MB.MC=MA^2=4IC^2\Rightarrow IC^2=\frac{1}{4}MB.MC\)

Xét tam giác AMB có I là trung điểm AM, O là trung điểm AB nên IO là đường trung bình tam giác ABM.

Vậy thì \(MB=2OI\Rightarrow MB^2=4OI^2\)   (1) 

Xét tam giác vuông MAB, theo Pi-ta-go ta có:

\(MB^2=MA^2+AB^2=MA^2+4R^2\)   (2)

Từ (1) và (2) suy ra \(4OI^2=MA^2+4R^2.\)

d) Do IA, IC là các tiếp tuyến cắt nhau nên ta có ngay \(AC\perp IO\Rightarrow\widehat{CDO}=90^o\)

Tương tự \(\widehat{CEO}=90^o\)

Xét tứ giác CDOE có \(\widehat{CEO}=\widehat{CDO}=90^o\)mà đỉnh E và D đối nhau nên tứ giác CDOE nội tiếp đường tròn đường kính CO.

Xét tứ giác CDHO có: \(\widehat{CHO}=\widehat{CDO}=90^o\) mà đỉnh H và D kề nhau nên CDHO nội tiếp đường tròn đường kính CO.

Vậy nên C, D, H , O, E cùng thuộc đường tròn đường kính CO.

Nói cách khác, O luôn thuộc đường tròn ngoại tiếp tam giác HDE.

Vậy  đường tròn ngoại tiếp tam giác HDE luôn đi qua điểm O cố định.

3 tháng 12 2018

Tính tỉ số \(\frac{OE}{OM}\)