K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 2 2021

Ta có \(M\left(2;-1\right)\)

Gọi phương trình đường thẳng d qua M có dạng: \(y=ax+b\)

\(\Rightarrow-1=2a+b\Rightarrow b=-2a-1\)

\(\Rightarrow y=ax-2a-1\)

Để d cắt 2 trục tọa độ \(\Rightarrow a\ne\left\{0;-\dfrac{1}{2}\right\}\)

\(\Rightarrow A\left(\dfrac{2a+1}{a};0\right)\) ; \(B\left(0;-2a-1\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2a+1}{a}\right|\) ; \(OB=\left|y_B\right|=\left|2a+1\right|\)

Ta có: \(S_{OMA}=\dfrac{1}{2}\left|y_M\right|.OA=\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|\)

\(S_{OMB}=\dfrac{1}{2}\left|x_M\right|.OB=\left|2a+1\right|\)

\(\Rightarrow\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|=\left|2a+1\right|\Leftrightarrow\dfrac{1}{2\left|a\right|}=1\Rightarrow\left[{}\begin{matrix}a=\dfrac{1}{2}\\a=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Phương trình: \(y=\dfrac{1}{2}x-2\)

12 tháng 9 2021

vì sao a lại khác -1/2 vậy ạ

18 tháng 10 2015

Gọi đường thẳng có dạng y = mx + n ( n khác 0 ) (1)

Vì đường thẳng cắt trục tung tại điểm b nên đt đi qua điểm có ( 0 ; b )  

thay x = 0 ; y = b vào (1) ta có :

b = 0.m + n=> n  = b 

Vì đường thẳng cắt trục hoàng tại điểm có hoành độ  là a nên dt đi qua điểm ( a; 0 ) 

thay x = a ; y = 0 ta có :

y = a.m + n <=> y = a.m + b => m = -b/a ( a khác 0 ) 

Đường thẳng đó có phương trính là \(y=\frac{-b}{a}.x+b\Leftrightarrow\frac{y}{b}=-\frac{x}{a}+1\Leftrightarrow\frac{x}{a}+\frac{y}{b}=1\)

Vậy ....

27 tháng 11 2016

Tọa độ A(-1; - 1), B(1; 1), C(3; x)

Ta có 

\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\)

\(Bc=\sqrt{2^2+\left(x-1\right)^2}\)

\(CA=\sqrt{4^2+\left(x+1\right)^2}\)

Để tam giác ABC vuông tại A thì

AB2 + AC2 = BC2

<=> 8 + 16 + (x + 1)2 = 4 + (x - 1)2

<=> x = - 5

Vậy tọa độ C(3; - 5)

27 tháng 11 2016

Điểm B ở đâu ra vậy bạn

22 tháng 8 2023

Để tìm a và b, ta có các điều kiện sau:

Đường thẳng (d) có tung độ gốc là 1/3, tức là đường thẳng có dạng y = (1/3)x + b.Đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng 4, tức là khi x = 4, y = 0.

Thay x = 4 và y = 0 vào phương trình đường thẳng, ta có:

0 = (1/3) * 4 + b 0 = 4/3 + b

Từ đó, ta có b = -4/3.

Vậy, phương trình đường thẳng (d) là: y = (1/3)x - 4/3.

(d) đi qua A(0;1/3) và B(4;0) nên ta có hệ phương trình:

0*a+b=1/3 và 4a+b=0

=>b=1/3 và 4a=-b=-1/3

=>a=-1/12 và b=1/3

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

NV
17 tháng 7 2021

Do đường thẳng qua M nên: \(4a+b=3\Rightarrow b=3-4a\)

b dương \(\Rightarrow3-4a>0\Rightarrow a< \dfrac{3}{4}\) (1)

Pt đường thẳng: \(y=ax-4a+3\)

Giao điểm với trục hoành:

\(ax-4a+3=0\Rightarrow x=\dfrac{4a-3}{a}=4-\dfrac{3}{a}\)

Do hoành độ là số nguyên  \(\Rightarrow3-\dfrac{3}{a}\in Z\)

\(\Leftrightarrow\dfrac{3}{a}\in Z\)  \(\Rightarrow a=\left\{-3;-1;1;3\right\}\)

Kết hợp điều kiện (1) \(\Rightarrow a=\left\{-3;-1\right\}\)

\(\Rightarrow b=\left\{15;7\right\}\)

Vậy \(\left(a;b\right)=\left(-3;15\right);\left(-1;7\right)\)

21 tháng 12 2020

b) Vì C(xC,yC) là giao điểm của hai đường thẳng y=x+2 và y=-2x+5 nên hoành độ của C là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của y=x+2 và y=-2x+5

hay x+2=-2x+5

\(\Leftrightarrow x+2+2x-5=0\)

\(\Leftrightarrow3x-3=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Thay x=1 vào hàm số y=x+2, ta được: 

y=1+2=3

Vậy: C(1;3)

Vì A(xA;yA) là giao điểm của đường thẳng y=x+2 với trục hoành nên yA=0

Thay y=0 vào hàm số y=x+2, ta được: 

x+2=0

hay x=-2

Vậy: A(-2:0)

Vì B(xB,yB) là giao điểm của đường thẳng y=-2x+5 với trục hoành Ox nên yB=0

Thay y=0 vào hàm số y=-2x+5, ta được: 

-2x+5=0

\(\Leftrightarrow-2x=-5\)

hay \(x=\dfrac{5}{2}\)

Vậy: \(B\left(\dfrac{5}{2};0\right)\)

Độ dài đoạn thẳng AB là:

\(AB=\sqrt{\left(xA-xB\right)^2+\left(yA-yB\right)^2}\)

\(\Leftrightarrow AB=\sqrt{\left(-2-\dfrac{5}{2}\right)^2+\left(0-0\right)^2}\)

\(\Leftrightarrow AB=\sqrt{\left(-\dfrac{9}{2}\right)^2}=\dfrac{9}{2}=4,5\left(cm\right)\)

Độ dài đoạn thẳng AC là: 

\(AC=\sqrt{\left(xA-xC\right)^2+\left(yA-yC\right)^2}\)

\(\Leftrightarrow AC=\sqrt{\left(-2-1\right)^2+\left(0-3\right)^2}\)

\(\Leftrightarrow AC=\sqrt{18}=3\sqrt{2}\left(cm\right)\)

Độ dài đoạn thẳng BC là: 

\(BC=\sqrt{\left(xB-xC\right)^2+\left(yB-yC\right)^2}\)

\(\Leftrightarrow BC=\sqrt{\left(\dfrac{5}{2}-1\right)^2+\left(0-3\right)^2}\)

\(\Leftrightarrow BC=\sqrt{\dfrac{45}{4}}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+AC+BC\)

\(\Leftrightarrow C_{ABC}=4.5+3\sqrt{2}+\dfrac{3\sqrt{5}}{2}\simeq12.10cm\)

Nửa chu vi của tam giác ABC là: 

\(P_{ABC}=\dfrac{C_{ABC}}{2}\simeq\dfrac{12.10}{2}=6.05cm\)

Diện tích của tam giác ABC là: 

\(S_{ABC}=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-BC\right)\cdot\left(P-AC\right)}\)

\(=\sqrt{6.05\cdot\left(6.05-4.5\right)\cdot\left(6.05-3\sqrt{2}\right)\cdot\left(6.05-\dfrac{3\sqrt{5}}{2}\right)}\)

\(\simeq6.76cm^2\)

21 tháng 12 2020

jup e nốt câu a vs