K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2020

b) Vì C(xC,yC) là giao điểm của hai đường thẳng y=x+2 và y=-2x+5 nên hoành độ của C là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của y=x+2 và y=-2x+5

hay x+2=-2x+5

\(\Leftrightarrow x+2+2x-5=0\)

\(\Leftrightarrow3x-3=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Thay x=1 vào hàm số y=x+2, ta được: 

y=1+2=3

Vậy: C(1;3)

Vì A(xA;yA) là giao điểm của đường thẳng y=x+2 với trục hoành nên yA=0

Thay y=0 vào hàm số y=x+2, ta được: 

x+2=0

hay x=-2

Vậy: A(-2:0)

Vì B(xB,yB) là giao điểm của đường thẳng y=-2x+5 với trục hoành Ox nên yB=0

Thay y=0 vào hàm số y=-2x+5, ta được: 

-2x+5=0

\(\Leftrightarrow-2x=-5\)

hay \(x=\dfrac{5}{2}\)

Vậy: \(B\left(\dfrac{5}{2};0\right)\)

Độ dài đoạn thẳng AB là:

\(AB=\sqrt{\left(xA-xB\right)^2+\left(yA-yB\right)^2}\)

\(\Leftrightarrow AB=\sqrt{\left(-2-\dfrac{5}{2}\right)^2+\left(0-0\right)^2}\)

\(\Leftrightarrow AB=\sqrt{\left(-\dfrac{9}{2}\right)^2}=\dfrac{9}{2}=4,5\left(cm\right)\)

Độ dài đoạn thẳng AC là: 

\(AC=\sqrt{\left(xA-xC\right)^2+\left(yA-yC\right)^2}\)

\(\Leftrightarrow AC=\sqrt{\left(-2-1\right)^2+\left(0-3\right)^2}\)

\(\Leftrightarrow AC=\sqrt{18}=3\sqrt{2}\left(cm\right)\)

Độ dài đoạn thẳng BC là: 

\(BC=\sqrt{\left(xB-xC\right)^2+\left(yB-yC\right)^2}\)

\(\Leftrightarrow BC=\sqrt{\left(\dfrac{5}{2}-1\right)^2+\left(0-3\right)^2}\)

\(\Leftrightarrow BC=\sqrt{\dfrac{45}{4}}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+AC+BC\)

\(\Leftrightarrow C_{ABC}=4.5+3\sqrt{2}+\dfrac{3\sqrt{5}}{2}\simeq12.10cm\)

Nửa chu vi của tam giác ABC là: 

\(P_{ABC}=\dfrac{C_{ABC}}{2}\simeq\dfrac{12.10}{2}=6.05cm\)

Diện tích của tam giác ABC là: 

\(S_{ABC}=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-BC\right)\cdot\left(P-AC\right)}\)

\(=\sqrt{6.05\cdot\left(6.05-4.5\right)\cdot\left(6.05-3\sqrt{2}\right)\cdot\left(6.05-\dfrac{3\sqrt{5}}{2}\right)}\)

\(\simeq6.76cm^2\)

21 tháng 12 2020

jup e nốt câu a vs 

4 tháng 10 2019

a) Vẽ đường thẳng y = -x + 2

    Cho x = 0 => y = 2 được C(0; 2)

    Cho y = 0 => x = 2 được A(2; 0)

Nối A, C ta được đường thẳng y = -x + 2

Để học tốt Toán 9 | Giải bài tập Toán 9

    Cho x = 0 => y = 2 được C(0; 2)

    Cho y = 0 => x = -4 được B(-4; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

c) Áp dụng định lí Pitago ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

26 tháng 12 2019

a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)

    Cho x = 0 => y = 2 được D(0; 2)

    Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)

Nối A, D ta được đồ thị của (1).

- Vẽ đồ thị hàm số y = 5 – 2x (2)

    Cho x = 0 => y = 5 được E(0; 5)

    Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)

Nối B, E ta được đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B là A(-4 ; 0) và B (2,5 ; 0)

Hoành độ giao điểm C của hai đồ thị (1) và (2) là nghiệm của phương trình:

0,5 x + 2 = 5 - 2x

⇔ 0,5x + 2x = 5 – 2

⇔ 2,5.x = 3 ⇔ x = 1,2

⇒ y = 0,5.1,2 + 2 = 2, 6

Vậy tọa độ điểm C(1,2; 2,6).

c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)

Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)

Ta có: AH = AO + OH = 4 + 1,2 = 5,2

BH = BO – OH = 2,5 – 1,2 = 1,3

CH = 2,6

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.

Ta có: tgα = 0,5 => α = 26o34'

Gọi β là góc hợp bởi đường thẳng y = 5 - 2x với tia Ox

Tam giác OEB vuông tại O nên:

Để học tốt Toán 9 | Giải bài tập Toán 9

10 tháng 2 2017

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x.

Vẽ đường thẳng qua B(0; 2) và A(-2; -2) được đồ thị hàm số y = 2x + 2.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

        2x + 2 = x

=> x = -2 => y = -2

Suy ra tọa độ giao điểm là A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

- Tọa độ điểm C:

Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

    x = 2 => y = 2 => tọa độ C(2; 2)

- Tính diện tích tam giác ABC: (với BC là đáy, AE là chiều cao tương ứng với đáy BC)

Để học tốt Toán 9 | Giải bài tập Toán 9

2 tháng 2 2021

a) 1 0 2 y x C y = x y=2x+2 H B -1 2

+) y = 2x + 2

Cho x = 0 => y = 2

                => ( 0 ; 2 )

        y = 0 => x = -1

                => ( -1 ; 0 )

- Đồ thị hàm số y = x đi qua 2 điểm có tọa độ ( 0 ; 0 )

- Đồ thị hàm số y = 2x + 2 đi qua 2 điểm có tọa độ ( 0 ; 2 ) và ( -1 ; 0 )

b) Hoành độ điểm A là nghiệm của PT sau :

x = 2x + 2

<=> 2x - x = -2

<=> x = -2

=> y = -2 

Vậy A ( -2 ; -2 )

c) Tung độ điểm C = 2 => hoành độ điểm C là x = 2

=> C ( 2 ; 2 )

Từ A hạ \(AH\perp BC\), ta có : AH = 4cm

                                                 BC = 2cm

Vậy : ..............

\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4.2=4\left(cm^2\right)\)

2 tháng 11 2018

a) Đồ thị hàm số y = 0,5x + 2 là đường thẳng đi qua các điểm (0; 2) và (-4; 0)

Đồ thị hàm số y = 5 – 2x là đường thẳng đi qua các điểm (0; 5) và (2,5; 0)

b) Ta có A(-4; 0), B(2,5; 0)

Tìm tọa độ điểm C, ta có: phương trình hoành độ giao điểm của đường thẳng y = 0,5x + 2 và y = 5 – 2x là

0,5x + 2 = 5 – 2x ⇔ 2,5x = 3

                               ⇔ x = 1,2

Do đó y = 0,5 . 1,2 + 2 = 2,6. Vậy C (1,2; 2,6)

c) Gọi D là hình chiếu của C trên Ox ta có:

CD = 2,6; AB = AO + OB = 4 + 2,5 = 6,5 (cm)

∆ACD vuông tại D nên AC2 = CD2 + DA2

⇒AC=√2,62+5,22=√33,8≈5,81(cm)⇒AC=2,62+5,22=33,8≈5,81(cm)

 Tương tự : BC=√BD2+CD2BC=BD2+CD2

                       =√1,32+2,62=√8,45≈2,91(cm)=1,32+2,62=8,45≈2,91(cm)

d) Ta có ∆ACD vuông tại D nên tgˆCAD=CDAD=2,65,2=12tgCAD^=CDAD=2,65,2=12

 ⇒ˆCAD≈26034′⇒CAD^≈26034′. Góc tạo bởi đường thẳng y=12x+2y=12x+2 và trục Ox là 26034’

Ta có ∆CBD vuông tại D nên tgˆCBD=CDBD=2,61,3=2⇒ˆCBD≈63026′tgCBD^=CDBD=2,61,3=2⇒CBD^≈63026′ 

Góc tạo bởi đường thẳng y = 5 – 2x và trục Ox là 1800 – 63026’ ≈ 116034’

a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)

    Cho x = 0 => y = 2 được D(0; 2)

    Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)

Nối A, D ta được đồ thị của (1).

- Vẽ đồ thị hàm số y = 5 – 2x (2)

    Cho x = 0 => y = 5 được E(0; 5)

    Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)

Nối B, E ta được đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Hoành độ giao điểm C của hai đồ thị là nghiệm phương trình:

    0,5x + 2 = 5 – 2x => x = 1,2

=> y = 0,5.1,2 + 2 = 2,6

=> Tọa độ C(1,2 ; 2,6)

c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)

Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.

Ta có: tgα = 0,5 => α = 26o34'

Gọi β là góc hợp bởi đường thẳng y = 5 – 2x với tia Ox (β là góc tù).

Gọi β' là góc kề bù với β, ta có:

tgβ' = -(-2) = 2 => β' = 63o26'

=> β = 180o – 63o26' = 116o34'

23 tháng 4 2017

a) Đồ thị được vẽ như hình bên.

b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).

Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).

Ta có tg A = 0,5. Suy ra ≈ 26034’.

Vì ∆BOC là tam giác vuông cân nên =450 .

Suy ra ≈ 1800 – (26034’ + 450) = 108026’.

c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).

Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).

Diện tích của ∆ABC là: AB . OC = . 6 . 2 = 6 (cm2).

23 tháng 4 2017

Bài giải:

a) Đồ thị được vẽ như hình bên.

b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).

Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).

Ta có tg A = 0,5. Suy ra ≈ 26034’.

Vì ∆BOC là tam giác vuông cân nên =450 .

Suy ra ≈ 1800 – (26034’ + 450) = 108026’.

c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).

Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).

Diện tích của ∆ABC là: AB . OC = . 6 . 2 = 6 (cm2).


22 tháng 1 2018

a) Vẽ đồ thị:

Để học tốt Toán 9 | Giải bài tập Toán 9

b) - Từ hình vẽ ta có: yA = yB = 4 suy ra:.

    + Hoành độ của A: 4 = 2.xA => xA = 2 (*)

    + Hoành độ của B: 4 = xB => xB = 4

=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)

- Tìm độ dài các cạnh của ΔOAB

Để học tốt Toán 9 | Giải bài tập Toán 9

((*): muốn tìm tung độ hay hoành độ của một điểm khi đã biết trước hoành độ hay tung độ, ta thay chúng vào phương trình đồ thị hàm số để tìm đơn vị còn lại.)

23 tháng 4 2017

a) * Vẽ đồ thị hàm số y = 0,5x + 2 (1)

Cho x = 0, tính được y = 2 => D(0; 2) thuộc đồ thị.

Cho y = 0, 0 = 0,5.x + 2 => x = -4 => A(-4; 0) thuộc đồ thị. Đường thẳng vẽ qua A, D là đồ thị của (1).

*Vẽ đồ thị hàm số y = 5 – 2x (2)

-Cho x = 0 tính được y = 5 E(0; 5) thuộc đồ thị

-Cho y = 0, 0 = 5 – 2x => x = 2,5 => B(2,5; 0) thuộc đồ thị. Đường thẳng vẽ qua B, E là đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

23 tháng 4 2017

(đơn vị đo trên các trục tọa độ là xentimet)

Lời giải:

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x. Vẽ đường thẳng qua B(0; 2) và E(-1; 0) được đồ thị hàm số y = 2x + 2.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Tìm tọa độ của điểm A: giải phương trình 2x + 2 = x, tìm được x = -2. Từ đó tìm được x = -2, từ đó tính được y = -2, ta có A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

5 tháng 1 2018

a) Đồ thị hàm số \(y=x\) là 1 đường thẳng đi qua 2 điểm O \(\left(0;0\right)\) và E\(\left(1;1\right)\)

Đồ thị hàm số \(y=2x+2\) là 1 đường thẳng đi qua 2 điểm B \(\left(0;2\right)\) và D \(\left(-1;0\right)\)

b) Hoành độ giao điểm A của 2 đường thẳng đã cho là nghiệm của pt:

\(x=2x+2\)

\(\Leftrightarrow\) \(x-2x=2\)

\(\Leftrightarrow\) \(-x=2\)

\(\Leftrightarrow\) \(x=-2\)

Tại \(x=-2\) thì giá trị của y là: \(y=2.\left(-2\right)+2=-2\)

Vậy tọa độ điểm A \(\left(-2;-2\right)\)

c) Đường thẳng song song với trục tung Ox và cắt trục hoành tại điểm B(0;2)

\(\Rightarrow\) Suy ra phương trình đường thẳng có dạng \(y=2x\)

Hoành độ giao điểm C của 2 đường thẳng y=2x và y=x là nghiệm của pt: 2x=x

\(\Rightarrow\) Tọa độ điểm C (2;2)

\(S_{ABC}=S_{ADO}+S_{BCOD}\)

9 tháng 12 2018

a. ...

b/ y = x + 1 (d)

    y = - x - 3 (d')

A là giao điểm của d và Ox

=> 0 = x + 1

<=> x = -1 

=> A ( -1;0)

B là giao điểm của (d') và Ox 

=> 0 = -x - 3

<=> x = -3

=> B ( -3 ; 0)

C là giao điểm của (d) và (d')

 Ptrình hoành độ gđiểm (d) và (d') x + 1 = - x - 3

                                                    <=> x = -2 

     => y = -1 

=> C ( -2 ; -1 )

c/ AB = OB - OA = 3 - 1 = 2

  \(AC=\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(-1+2\right)^2+\left(0+1\right)^2}=\sqrt{2}\) 

\(BC=\sqrt{\left(-3+2\right)^2+\left(0+1\right)^2}=\sqrt{2}\)

Chu vi tam giác = AB + AC +BC = \(2+2\sqrt{2}\)

4 tháng 4 2020

nhkubunhmkoju90j54378888 bnhb