Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiểm tra thấy A và B nằm khác phía so với mặt phẳng (P)
Ta tìm được điểm đối xứng với B qua (P) là B ' ( -1;-3;4 )
Lại có M A - M B = M A - M B ' ≤ A B ' = c o n s t .
Vậy M A - M B đạt giá trị lớn nhất khi M, A, B’ thẳng hàng hay M là giao điểm của đường thẳng AB’ với mặt phẳng (P).
Đường thẳng AB’ có phương trình tham số là x = 1 + t y = - 3 z = - 2 y .
Tọa độ điểm M ứng với tham số t là nghiệm của phương trình
1 + t + - 3 + - 2 t - 1 = 0 ⇔ t = - 3 ⇒ M - 2 ; - 3 ; 6
Suy ra a = -2; b = -3; c = 6
Vậy a + b + c = 1
Đáp án A
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14
Ta thấy và .
Áp dụng định lý hàm số Cosin cho tam giác MAB ta có:
M A 2 = B A 2 + B M 2 - 2 B A . B M cos 60 o = 6 + 3 2 - 2 6 . 6 2 . 1 2 = 9 2
Suy ra M A = 3 2 2 . Từ đây ta nhận thấy A B 2 = M A 2 + M B 2 nên tam giác MAB vuông tại M và có M A B ^ = 30 o .
Mặt khác:
sin ∆ ^ ; a = 2 + 2 - 1 6 . 6 = 1 2 ⇒ ∆ ^ ; a = 30 o = M A B ^ .
Từ đó suy ra M chính là hình chiếu của B lên mặt phẳng (a).
Khi đó M B : x - 2 2 = y - 2 1 = z - 6 - 1
nên M ( 2m + 2; m + 2; -m + 6 )
Vì M thuộc mặt phẳng (a) nên
2( 2m + 2 ) + ( m + 2 ) - ( -m + 6 ) + 3 = 0 ⇒ m = - 1 2
Vậy M 1 ; 3 2 ; 13 2
Đáp án A