Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta nhận thấy
1/2=1-1/2
1/6=1/2-1/3
1/12=1/3-1/4
1/20=1/4-1/5
1/30=1/5-1/6
1/42=1/6-1/7
ta có:
1/2+1/6+1/12+1/20+1/30+1/42
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7
bn tự hiểu nha
a: \(\Leftrightarrow\dfrac{32}{x}=\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{99}\)
=>32/x=1/3-1/5+1/5-1/7+...+1/9-1/11
=>32/x=1/3-1/11=8/33
=>x=32:8/33=132
b: \(\Leftrightarrow1-\dfrac{1}{6}+1-\dfrac{1}{12}+...+1-\dfrac{1}{56}=\dfrac{x}{16}\)
\(\Leftrightarrow6-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\right)=\dfrac{x}{16}\)
=>x/16=6-1/2+1/8=11/2+1/8=45/8=90/16
=>x=90
c: \(\Leftrightarrow\dfrac{22}{x}=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\)
=>22/x=1/2*2/3*...*9/10*3/2*4/3*...*11/10
=>22/x=1/10*11/2=11/20=22/40
=>x=40
A = \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\)
A = \(\dfrac{1}{4\times5}\) + \(\dfrac{1}{5\times6}\) + \(\dfrac{1}{6\times7}\)+ \(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+ \(\dfrac{1}{9\times10}\) + \(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)
A = \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\) +\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\) +.....+\(\dfrac{1}{11}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{6}\)
\(\Rightarrow x+\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}=\dfrac{47}{42}\\ \Rightarrow x+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{47}{42}\\ \Rightarrow x+1-\dfrac{1}{6}=\dfrac{47}{42}\\ \Rightarrow x=\dfrac{47}{42}-\dfrac{5}{6}=\dfrac{2}{7}\)
\(\dfrac{1}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}\)
\(=\dfrac{1}{2.3}+\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{5}+\dfrac{1}{6}-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\left(\frac{1}{2}+\frac{1}{20}\right)+\left(\frac{1}{6}+\frac{1}{30}\right)+\frac{1}{12}\)
\(=\frac{11}{20}+\frac{1}{5}+\frac{1}{12}\)
\(=\frac{3}{4}+\frac{1}{12}\)
\(=\frac{10}{12}=\frac{5}{6}\)
A=1/2+1/6+1/12+...+1/56
A=1/1*2+1/2*3+1/3*4+....+1/7*8
A=1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8
A=1-1/8
A=7/8
Có công thức \(\dfrac{x}{a\left(a+x\right)}=\dfrac{1}{a}-\dfrac{1}{a+x}\) nhé!
Ví dụ: \(\dfrac{2}{2.4}=\dfrac{1}{2}-\dfrac{1}{4}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(=1-\dfrac{1}{8}=\dfrac{7}{8}\)
Dấu . tức là nhân nhé!