![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) =(4+42)+(43+44)+...+(499+4100)
=4.(1+4)+43.(1+4)+...+499.(1+4)
=4.5+43.5+...+499.5
=5.(4+43+...+499) chia hết cho 5
vậy 4+42+43+...+499+4100 chia hết cho 5
![](https://rs.olm.vn/images/avt/0.png?1311)
S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + ... + 2^100
2S = 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + ... + 2^100 + 2^101
2S - S = ( 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + ... + 2^100 + 2^101 ) - ( 1 + 2 + 2^2 +2^3 +2^4 + 2^5 + .... + 2^100 )
S = 2^101 - 1
Vậy S = 2^101 - 1
Ta có :
S = 1 + 2 + 22 + 23 + 24 + 25 + ... + 2100
2S = 2 + 22 + 23 + 24 + 25 + ... + 2101
2S - S = ( 2 + 22 + 23 + 24 + 25 + ... + 2101 ) - ( 1 - 2 - 22 - 23 - 24 - 25 - ... - 2100 )
S = 2101 - 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=100^2-99^2+...+2^2-1^2=\left(100+99\right)+\left(98+97\right)+..+\left(2+1\right)\)
\(S=100+99+..+2+1\)
\(S=1+2+..+99+100\)
\(2S=\left(1+100\right)+..+\left(1+100\right)\)
\(S=\frac{100.\left(100+1\right)}{2}=50.101\)
S=(22+42+62+.......+1002)-(12+32+52+......+992)
S=22+42+62+.....+1002-12+32+52+.....+992
S=(22-12)+(42-32)+.........+(1002-992)
Sử dụng công thức a2-b2=(a+b)(a-b)
S=(2+1)(2-1)+(4+3)(4-3)+.......+(100+99)(100-99)
S=3.1+7.1+.......+199.1
s=3+7+........+199
tính S =5050
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A= 1/22+1/24+...+1/2100
Ta có 4A=1+1/22+1/24+..+1/298
=> 4A-A=(1+1/22+1/24+..+1/298)-(1/22+1/24+...+1/2100)
=> 3A=1-1/2100 =>A=\(\frac{1-\frac{1}{2^{100}}}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
S=1+22+24+...+2100
4S=22B=22+24+26+...+2102
3B=4B-B=2102-1
=> B = \(\frac{2^{102}-1}{3}\)
Thư viện Bài giảng điện tử Vào đây trang 12 /14
Giải : S = 2.(2 + 0 ) + 4.(3 + 1) + 6.(4 + 2) + .... + 100.(