Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{98}+4^{99}\right)\\ S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{98}\left(1+4\right)\\ S=\left(1+4\right)\left(1+4^2+...+4^{98}\right)=5\left(1+4^2+...+4^{98}\right)⋮5\)
\(S=\left(1+4\right)+...+4^{98}\left(1+4\right)\)
\(=5\left(1+...+4^{98}\right)⋮5\)
Đặt \(A=4+4^2+4^3+4^4+...+4^{2016}\)
Ta có: \(A=4+4^2+4^3+4^4+...+4^{2016}\)
\(\Leftrightarrow4\cdot A=4^2+4^3+4^4+4^5+...+4^{2017}\)
\(\Leftrightarrow A-4A=4+4^2+4^3+4^4+...+4^{2016}-4^2-4^3-4^4-4^5-...-4^{2017}\)
\(\Leftrightarrow-3A=4-4^{2017}\)
\(\Leftrightarrow A=\dfrac{4-4^{2017}}{-3}\)
\(\Leftrightarrow A=\dfrac{4^{2017}-4}{3}\)
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
46 - 45 + 44 - 43 + ....... + 2 - 1 ( có 46 số hạng )
= 1 + 1 + ......... + 1 ( có 46 : 2 = 23 số hạng )
= 1 x 23
= 23
2 - 1 + 4 - 3 + .............. + 44 - 43 + 46 - 45
=(2-1)+(4-3)+...+(44-43)+(46-45)
=1 . 22
=22
46-45+44-43+.......+2-1
=1+1+1+1+............+1(23 số 1)
=1.23
=23
50- 49+48-47+46-45+44-43+....+4-3+2-1
= 1 + 1 + 1+ 1 + ... + 1 + 1
= 1 x 25
= 25
a) =(4+42)+(43+44)+...+(499+4100)
=4.(1+4)+43.(1+4)+...+499.(1+4)
=4.5+43.5+...+499.5
=5.(4+43+...+499) chia hết cho 5
vậy 4+42+43+...+499+4100 chia hết cho 5