Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^5-5x^4+5x^3-5x^2+5x-6\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x-2\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-2\)
\(=-2\)
A = x5 - 5x4 + 5x3 - 5x2 + 5x -1
A = x5 - ( 4 + 1 ) x4 + ( 4 + 1 ) x3 - ( 4 + 1 ) x2 + ( 4 + 1 )x - 1
Thay 4= x vào biểu thức A , ta đc :
A= x5 - ( x + 1 ) x4 + ( x + 1 ) x3 - ( x + 1 ) x2 + ( x + 1 )x - 1
A= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x -1
A= x - 1
Thay x = 4 vào biểu thức A, ta đc
A= 4 - 1
A= 4
b, B= x2006 - 8x2005 + 8x2004 - .... + 8x2 - 8x -5
B= x2006 - ( 7 + 1 ) x2005 + ( 7 + 1 ) x2004 - .......+ ( 7 + 1 ) x2 - ( 7 + 1 ) x - 5
Thay 7 = x vào biểu thức B ta đc
B= x2006 - ( x + 1 ) x2005 + ( x + 1 )x2004 - ......+ ( x + 1 ) x2 + ( x + 1 )x - 5
B = x2006 - x2006 - x2005 + x2005 + x2004 - .....+ x3 - x2 + x2 + x - 5
B= x - 5
Thay x = 7 vào biểu thức B, ta đc:
B = 7 - 5
B = 2
( PCY ❤ )
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
a) \(\frac{x+1}{4}-\frac{x+2}{5}+\frac{x+4}{7}-\frac{x+5}{8}+\frac{x+7}{10}-\frac{x+9}{12}=0\)
\(\Leftrightarrow\)\(\frac{x+1}{4}-1-\frac{x+2}{5}+1+\frac{x+4}{7}-1-\frac{x+5}{8}+1+\frac{x+7}{10}-1-\frac{x+9}{12}+1=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}-\frac{3-x}{5}+\frac{x-3}{7}-\frac{3-x}{8}+\frac{x+3}{10}-\frac{3-x}{12}=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}+\frac{x-3}{5}+\frac{x-3}{7}+\frac{x-3}{8}+\frac{x-3}{10}+\frac{x-3}{12}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\right)=0\)
Vì \(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\ne0\)
\(\Rightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy...
b) \(\frac{x}{2004}+\frac{x+1}{2005}+\frac{x+2}{2006}+\frac{x+3}{2007}=4\)
\(\Leftrightarrow\)\(\frac{x}{2004}-1+\frac{x+1}{2005}-1+\frac{x+2}{2006}-1+\frac{x+3}{2007}-1=0\)
\(\Leftrightarrow\)\(\frac{x-2004}{2004}+\frac{x-2004}{2005}+\frac{x-2004}{2006}+\frac{x-2004}{2007}=0\)
\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\right)=0\)
Vì \(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\ne0\)
\(\Rightarrow\)\(x-2004=0\)
\(\Leftrightarrow\)\(x=2004\)
Vậy...
Ta có
8-1=x
Thay vào B
=>\(B=x^{2006}+\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-.......+\left(x+1\right)x^2-\left(x+1\right)x-5\)
=>tự giải típ
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
Ta có :
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)\(A=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+3\)
\(A=3\)
P/s tham khảo nha
hok tốt
x = 7 => 8 = x + 1 (1)
Thay (1) và F, ta có:
\(F=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\)
\(F=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\)
\(F=-7-5\)
F = - 12
Bài 1:
Gọi bốn số liên tiếp cần tìm là a;a+1;a+2;a+3(Điều kiện: a∈N)
Theo đề bài, ta có:
\(a\cdot\left(a+1\right)+146=\left(a+2\right)\left(a+3\right)\)
\(\Leftrightarrow a^2+a+146=a^2+5a+6\)
\(\Leftrightarrow a^2+a+146-a^2-5a-6=0\)
\(\Leftrightarrow-4a+140=0\)
\(\Leftrightarrow-4a=-140\)
hay a=35(nhận)
Vậy: Bốn số liên tiếp cần tìm là 35;36;37;38
Bài 2:
Ta có: \(N=3\cdot\frac{1}{117}\cdot\frac{1}{119}-\frac{4}{117}\cdot5\frac{118}{119}-\frac{5}{117\cdot119}+\frac{8}{39}\)
\(=3\cdot\frac{1}{117\cdot119}-2852\cdot\frac{1}{117\cdot119}-5\cdot\frac{1}{117\cdot119}+\frac{8}{39}\)
\(=\frac{-2854}{117\cdot119}+\frac{8}{39}\)
\(=\frac{-2854}{39\cdot357}+\frac{2856}{39\cdot357}=\frac{2}{20943}\)
x=7 => x+1=8
\(x^{2006}-8x^{2005}+8x^{2004}-...+8x^2-8x-5\)
\(=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+\right)x^2-\left(x+1\right)x-5\)
\(=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\)
\(=-x-5=-7-5=-12\)
Vậy...