K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

a) \(A=9x^2-6x+3\)

\(A=\left(3x\right)^2-2.3x+1+2\)

\(A=\left(3x-1\right)^2+2\)

\(\left(3x-1\right)^2\ge0\) với mọi x

\(\Rightarrow\left(3x-1\right)^2+2\ge2\) với mọi x

\(\Rightarrow Amin=2\Leftrightarrow3x-1=0\)

\(\Rightarrow3x=1\)

\(\Rightarrow x=\dfrac{1}{3}\)

Vậy giá trị nhỏ nhất của biểu thức là 2 khi x = 1/3

b) \(B=x^2-3x\)

\(B=x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\)

\(B=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\)

\(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\) với mọi x

\(\Rightarrow Bmin=-\dfrac{9}{4}\Leftrightarrow x-\dfrac{3}{2}=0\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy giá trị nhỏ nhất của biểu thức là -9/4 khi x = 3/2

c) \(C=x^2+8x+10\)

\(C=x^2+2.x.4+16-6\)

\(C=\left(x+4\right)^2-6\)

\(\left(x+4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+4\right)^2-6\ge-6\) với mọi x

\(\Rightarrow Cmin=-6\Leftrightarrow x+4=0\)

\(\Rightarrow x=-4\)

Vậy giá trị nhỏ nhất của biểu thức là -6 khi x = -4

d) \(D=x^2-2x+15+y^2+3y\)

\(D=x^2-2x+1+y^2+2.y.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+14\)

\(D=\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\)

\(\left(x-1\right)^2\ge0\) với mọi x

\(\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-1\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\ge\dfrac{47}{4}\) với mọi x,y

\(\Rightarrow Dmin=\dfrac{47}{4}\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy giá trị của biểu thức là 47/4 khi x = 1 và y = -3/2

e) \(E=2x^2+4xy+8x+5y^2-4y-100\)

\(E=\left(x^2+4xy+4y^2\right)+\left(x^2+8x+16\right)+\left(y^2-4y+4\right)-120\)

\(E=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\)

\(\left(x+2y\right)^2\ge0\) với mọi x,y

\(\left(x+4\right)^2\ge0\) với mọi x

\(\left(y-2\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\) với mọi x,y

\(\Rightarrow Emin=-120\Leftrightarrow\left\{{}\begin{matrix}x+2y=0\\x+4=0\\y-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

Vậy giá trị nhỏ nhất của biểu thức là -120 khi x = -4 ; y = 2

f) \(F=x^2-6xy+26+10y^2-10y\)

\(F=x^2-6xy+9y^2+y^2-10y+25+1\)

\(F=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+1\)

\(F=\left(x-3y\right)^2+\left(y-5\right)^2+1\)

\(\left(x-3y\right)^2\ge0\) với mọi x,y

\(\left(y-5\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2\ge0\) với mọi x,y

\(\Rightarrow\left(x-3y\right)^2+\left(y-5\right)^2+1\ge1\) với mọi x,y

\(\Rightarrow Fmin=1\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3y\Rightarrow x=15\\y=5\end{matrix}\right.\)

Vậy giá trị của biểu thức là 1 khi x = 15 và y = 5

26 tháng 10 2021

Mấy bạn bị lms í=)) dễ v cũng ko biết làm

26 tháng 10 2021

Mình chỉ đăng lên để thử xem coi ai làm đc ko chứ mình cx ko biết làm. Ai jup mình vớiiiiii

22 tháng 7 2017

giúp mk vs mk đang cần gấp

Có link câu này bạn tham khảo xem có được không nhé

https://h.vn/hoi-dap/question/535151.html

Học tốt nhé!