K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2015

x=7

=>x+1=8

=> A= x^15 - 8x^14 + 8x^13 - 8x^12 +....- 8x^2 + 8x - 5 

=x15-(x+1)x14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5

=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5

=x-5

=>A=7-5=2

Vậy A=2 khi x=7

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

28 tháng 5 2017

Đặt \(A=x^{13}-\left(8x^{12}-8x^{11}+8x^{10}-8x^9+.....+8x^2-8x^1\right)+8\)

Đặt \(B=8x^{12}-8x^{11}+8x^{10}-....+8x^2-8x^1\)

\(B=8.\left(x^{12}-x^{11}+x^{10}-x^9+....+x^2-x^1\right)\)

Đặt \(C=x^{12}-x^{11}+x^{10}-x^9+...+x^2-x\)

Suy ra \(C.x=x^{13}-x^{12}+x^{11}-x^{10}+.....+x^3-x^2\)

Nên \(C.x-C=x^{13}-x\)hay \(C.\left(x-1\right)=x^{13}-x\)

Khi đó \(C=\frac{x^{13}-x}{x-1}\)nên\(B=8.\frac{x^{13}-x}{x-1}\)

Từ đó tính tương tự nha , cách làm thì có thể sai những em vẫn cố gắng giúp , ai có cách hay hơn thì giải nhé 

28 tháng 5 2017

chả hiểu gì

15 tháng 10 2015

= x13 -(7+1)x12 + (7+1)x11 -(7+1)x10 .... -(7+1)x12 +(7+1)x +8

= x13 -(x+1)x12 + (x+1)x11 -(x+1)x10 .... - (x+1)x2 +(x+1)x +8   ( Vì x=7)

=x13 - x13 - x12 + x12 + x11 - x11 - x11 - ..... -x3 - x2 +x2 +x+8

=x+8=7+8=15

Ta có : x = 7 ⇒ x + 1 = 8

Thay x + 1 = 8 vào A , ta được :

A = x15 - ( x + 1)x14 + ( x + 1)x13 - ( x + 1)x12 +....- ( x + 1)x2 + ( x + 1)x - 5

A = x15 - x15 - x14 + x14 + x13 - x13 - x12 +....- x3 - x2 + x2 + x - 5

A = x - 5 = 7 - 5 = 2

a) Ta có: \(x\left(x-3xy\right)-\frac{3}{5}y\left(4y-5x^2\right)\)

\(=x^2-3x^2y-\frac{12}{5}y^2+3x^2y\)

\(=x^2-\frac{12}{5}y^2\)(1)

Thay x=-2 và \(y=-\frac{1}{2}\) vào biểu thức (1), ta được:

\(\left(-2\right)^2-\frac{12}{5}\cdot\left(-\frac{1}{2}\right)^2\)

\(=4-\frac{12}{5}\cdot\frac{1}{4}\)

\(=4-\frac{3}{5}=\frac{17}{5}\)

Vậy: Giá trị của biểu thức \(x\left(x-3xy\right)-\frac{3}{5}y\left(4y-5x^2\right)\) tại x=-2 và \(y=-\frac{1}{2}\)\(\frac{17}{5}\)

b) Ta có: x=7

nên 8=x+1

Thay 8=x+1 vào biểu thức \(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\), ta được:

\(x^{15}-x^{14}\cdot\left(x+1\right)+x^{13}\cdot\left(x+1\right)-x^{12}\cdot\left(x+1\right)+...-x^2\cdot\left(x+1\right)+x\left(x+1\right)-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+x^{12}-...-x^3-x^2+x^2+x-5\)

\(=x-5=7-5=2\)

Vậy: Giá trị của biểu thức \(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\) tại x=7 là 2

6 tháng 9 2017

Từ \(x=7\Rightarrow x+1=8\) thay vào B ta được :

\(B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+......-x^3-x^2+x^2+x-5\)

\(=x-5=7-5=2\)

Vậy B = 2

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

20 tháng 8 2016

Với x=7

Ta có

\(BT=7^{13}-8.7^{12}+8.7^{11}-8.7^{10}+.....-8.7^2+8.7+8\)

\(=7^{13}-\left(7+1\right)7^{12}+\left(7+1\right)7^{11}-\left(7+1\right)7^{10}+......+\left(7+1\right)7+\left(7+1\right)\)

\(=7^{13}-7^{13}-7^{12}+7^{12}+7^{11}-7^{11}-7^{10}+.....+7^2+7+7+1\)

\(=15\)

Vậy tại x=7 thì biểu thức bằng 15

20 tháng 8 2016

Với \(x=7\) thì \(x^{13}-8x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)

   \(=-x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)

   \(=x^{11}-8x^{10}+...-8x^2+8x+8\)

   \(=...=x+8=15\)

x=7

nên x+1=8

\(A=x^{15}-x^{14}\left(x+1\right)+x^{13}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-5\)

\(=x-5=7-5=2\)