Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Ta có a + b = 10
=> (a + b)2 = 102
=> a2 + b2 + 2ab = 100
=> a2 + b2 + 8 = 100
=> a2 + b2 = 92
Vậy A = a2 + b2 = 92
b) Ta có a + b = 10
=> (a + b)3 = 103
=> a3 + b3 + 3a2b + 3ab2 = 1000
=> a3 + b3 + 3ab(a + b) = 1000
=> a3 + b3 + 3.4.10 = 1000
=> a3 + b3 + 120 = 1000
=> a3 + b3 = 880
Vậy B = a3 + b3 = 880
Đưa biểu thức về hđt nhé
a, Ta có : \(\left(a+b\right)^2=10^2\Leftrightarrow a^2+b^2+2ab=100\)
\(\Leftrightarrow a^2+b^2+8=100\Leftrightarrow a^2+b^2=92\)
b, Ta có : \(\left(a+b\right)^3=10^3\Leftrightarrow a^3+b^3+3a^2b+3ab^2=1000\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=1000\)
\(\Leftrightarrow a^3+b^3+12.10=1000\Leftrightarrow a^3+b^3=880\)
Ta có : \(\left(a+b\right)^2=a^2+2ab+b^2\)
Thay số từ đề bài vào rùi tính thui :
\(15^2=a^2+2\cdot7+b^2\)
\(\Leftrightarrow225=a^2+b^2+14\)
\(\Leftrightarrow a^2+b^2=225-14=211\)
TK NKA !!!
Phân tích 1 tí
a + b = 11 > 0
a . b = 30 > 0
Suy ra a và b đều là số dương
a + b = 11
a = 11 - b
a . b = 30
( 11 - b ) . b = 30
-b^2 + 11b - 30 = 0
\(\orbr{\begin{cases}b=5\\b=6\end{cases}}\) ( nhận )
\(b=5\Rightarrow a=6\left(n\right)\)
\(b=6\Rightarrow a=5\left(l\right)\left(a>b\right)\)
Vậy chỉ có a = 6 ; b = 5 thỏa điều kiện
\(\left(a-b\right)^{2019}\)
\(=\left(6-5\right)^{2019}\)
\(=1^{2019}\)
\(=1\)
Vì a+b>0 và ab>0 nên a,b dương
Ta có\(a+b=11\Rightarrow\left(a+b\right)^2=11^2\Leftrightarrow a^2+2ab+b^2=121\)
\(\Rightarrow a^2+2ab+b^2-4ab=121-4ab\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=1\)(Do ab=1 và a,b dương và a>b)
\(\Rightarrow P=1^{2019}=1\)
Vậy P=1
a) ( a + b ) ( a + b ) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2
hoặc = ( a + b )^2 = a^2 + 2ab + b^2 ( áp dụng HĐT )
b) tương tự
a, ( a + b )(a + b)
= (a+b)a + (a+b)b
= a2 + ba + ab + b2
= a2 + b2 + 2ab
b, ( a - b ) ( a - b )
= (a-b)a - (a-b)b
= a2 - ab - ab + b2
= a2 + b2 - 2ab