K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2018

a) ( a + b ) ( a + b ) = a^2 + ab + ab + b^2 = a^2 + 2ab + b^2

hoặc = ( a + b )^2 = a^2 + 2ab + b^2 ( áp dụng HĐT )

b) tương tự

2 tháng 6 2018

a, ( a + b )(a + b)

= (a+b)a + (a+b)b

= a2 + ba + ab + b2

= a2 + b2 + 2ab

b, ( a - b ) ( a - b )

= (a-b)a - (a-b)b

= a2 - ab - ab + b2

= a2 + b2 - 2ab

Bài 2: 

\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)

\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)

\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)

18 tháng 12 2016

Có: \(a+b=a^2+b^2=a^3+b^3\)

\(\Rightarrow a+b+a^3+b^2=2\left(a^2+b^2\right)\)

\(\Rightarrow\left(a-2a^2+a^3\right)+\left(b-2b^2+b^3\right)=0\)

\(\Rightarrow a\left(1-2a+a^2\right)+b\left(1-2b+b^2\right)=0\)

\(\Rightarrow a\left(1-a\right)^2+b\left(1-b\right)^2=0\) (1)

Vì: \(a>0;\left(1-a\right)^2\ge0\)

=> \(a\left(1-a\right)^2\ge0\)

Vì: \(b>0;\left(1-b\right)^2\ge0\)

=> \(b\left(1-b\right)^2\ge0\)

Do đó:

\(\left(1\right)\Leftrightarrow\begin{cases}a\left(1-a\right)^2=0\\b\left(1-b\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}1-a=0\\1-b=0\end{cases}\)\(\Leftrightarrow a=b=1\)

Khi đó; \(a^{2015}+b^{2015}=1^{2015}+1^{2015}=2\)

18 tháng 12 2016

cảm ơn bn nhiều!!!

\(3a^2+3b^2=10ab\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Rightarrow3a^2-9ab-ab+3b^2=0\)

\(\Leftrightarrow3a\left(a-3b\right)-b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)

Trường hợp 1: a=3b

\(A=\dfrac{a-b}{a+b}=\dfrac{3b-b}{3b+b}=\dfrac{2}{4}=\dfrac{1}{2}\)

Trường hợp 2: b=3a

\(A=\dfrac{a-b}{a+b}=\dfrac{a-3a}{a+3a}=\dfrac{-2}{4}=-\dfrac{1}{2}\)

31 tháng 10 2020

\(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)

<=> \(\left(a+1\right)^3+\left(b+1\right)^3+\left(a+1\right)+\left(b+1\right)=0\)

<=> \(\left(a+1+b+1\right)\left[\left(a+1\right)^2+\left(b+1\right)^2-\left(a+1\right)\left(b+1\right)+1\right]=0\)

<=> \(a+b+2=0\)

<=> a + b = - 2 

Khi đó: 2020 (a +b ) = 2020. ( -2) = -4040

14 tháng 12 2023

Thay x=-1; y=0 vào A và B:

A= 3x5 -7x2y3 + 15x2y = 3.(-1)5 - 7(-1)2.03 + 15(-1)2.0= -3 - 0 + 0 = -3

B= 5x2y - 15xy2 + x5 + 8 = 5.(-1)2.0 - 15.(-1).02 + (-1)5 + 8 = 0 + 0 + (-1) + 8 = 7

b, A+B= (3x5 - 7x2y3 + 15x2y) + (5x2y - 15xy2 + x5 + 8)

A+B = (3x5 + x5) - 7x2y3 + (15x2y + 5x2y) - 15xy2 + 8

A+B= 4x5 - 7x2y3 + 20x2y - 15xy2 + 8

---

A-B= (3x5 - 7x2y3 + 15x2y) - (5x2y - 15xy2 + x5 + 8)

A-B=  (3x5 - x5) - 7x2y3 + (15x2y - 5x2y) + 15xy2 - 8

A-B= 2x- 7x2y3 + 10x2y + 15xy2 - 8

20 tháng 10 2021

\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)

Vì a + c = 2016 -> a = 2016 - [ b + c] ; b = 2016 - [ a + c] ; c = 2016 - [ a - b]

Ta có: S = a/ b + c   +  b/ a + c   + c/a + b

S = 2016 - [ b + c] + 2016 - [ a + c] + 2016 - [ a + b]

S = 2016/ b + c - 1 + 2016/a + c - 1 + 2016/a + b

S = 2016.[ 1/b + c   + 1/a + c  + 1/a + b] - 3

S = 2016. 1/2016 - 3

S = - 2

18 tháng 12 2019

Từ \(a+b+c=2016\) và \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{1}{2016}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=2016.\frac{1}{2016}\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=1\)

\(\Rightarrow\frac{\left(a+b\right)+c}{a+b}+\frac{\left(a+c\right)+b}{a+c}+\frac{\left(b+c\right)+a}{b+c}=1\)

\(\Rightarrow1+\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}=1\)

\(\Rightarrow\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=-2\)

hay \(P=-2\)

4 tháng 9 2021

a)\(a^3+b^3+3ab=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab=a^2-ab+b^2+3ab=a^2+2ab+b^2=\left(a+b\right)^2=1^2=1\)

b) \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow0=0\)(đúng do \(a+b+c=0\))

Vậy nếu a+b+c=0 thì \(a^3+b^3+c^3=3abc\)