Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)
1) ( a - b )2 = a2 - 2ab + b2 = a2 + 2ab + b2 - 4ab = ( a + b )2 - 4ab
= 72 - 4.5 = 49 - 20 = 29
2) ( a + b )2 = a2 + 2ab + b2 = a2 - 2ab + b2 + 4ab = ( a - b )2 + 4ab
= 52 + 4.3 = 25 + 12 = 37
4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)
=> (a+b)^2=(a-b)^2+4ab
- 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
- 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
- 2x2 – 6x + x – 3 = 0
(x – 3)(2x + 1) = 0
x = 3 hay x = -1/2
các cặp số tổng của chúng bằng 12 là
(1và11);(2và10);(3và9);(4và8);(5và7);(6và6)
các cặp số có tích bằng 35 là
(5và7)
vậy a thuộc { 5;7 }
b thuộc {5;7}
vậy ta có các cặp số a;b để thỏa mãn mọi điều kiện là
(a=5 và b=7);(a=7 và b=5)
còn lại bạn tự thay số mà tính nhé máy tính của mình không viết được số mũ mình cảm ơn
\(a,\left(a+2\right)^2-\left(a+2\right)\left(a-2\right)\)
\(=a^2+4x+4-a^2+4\)
\(=4x+8\)
\(=4\left(x+2\right)\)
\(b,\left(a+b\right)^2-\left(a-b\right)^2\)
\(=a^2+2ab+b^2-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=4ab\)
\(c,\left(3x+4\right)^2-10x-\left(x+4\right)\left(x-4\right)\)
\(=9x^2+24x+16-10x-x^2+16\)
\(=8x^2+14x+32\)
\(=2\left(4x^2+7x+16\right)\)
Giả sử \(a\ge b\ge c\)
\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\)
\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\)
\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)
\(\ge12\)
ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)
Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị
Ta có: \(a+b+c+d=a^2+b^2+c^2+d^2\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d=1\\a=b=c=d=0\end{cases}}\)
mà \(a^2+b^2+c^2+d^2=4\Rightarrow a=b=c=d=1\)
\(\Rightarrow ab+bc+cd+ad=1+1+1+1=4\)
Vậy.....
Ngay kia minh giup
ok dc lun