Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)
\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)
\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)
\(c,\)Tại x = 6, ta có :
\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)
Vậy tại x = 6 thì B = 3
\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)
Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)
Th2: \(x+3=-1\Rightarrow x=-4\)
Th3 : \(x+3=3\Rightarrow x=0\)
TH4 \(x+3=-3\Rightarrow x=-6\)
Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)
a)Để B đc xác định thì :x+3 khác 0
x-3 khác 0
x^2-9 khác 0
=>x khác -3
x khác 3
b) Kết Qủa BT B là:3/x+3
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.
a,P=\(\frac{x^2\left(x-3\right)+3\left(x-3\right)}{(x-3)^2}\)
=\(\frac{x^2+3}{x-3}\)
a) Điều kiện xác định: \(x^2-6x+9=\left(x-3\right)^2\ne0\)
\(\Rightarrow x\ne3\)
ĐKXĐ: \(x\ne3\)
\(P=\frac{x^3-3x^2+3x-9}{x^2-6x+9}\)
\(P=\frac{\left(x-3\right)\left(x^2+3\right)}{\left(x-3\right)\left(x-3\right)}\)
\(P=\frac{x^2+3}{x-3}\)
b) +) x = 2
\(P=\frac{2^2+3}{2-3}=-7\)
+) x = -3
\(P=\frac{\left(-3\right)^2+3}{-3-3}=1\)
\(P=5x\left(x^2-3\right)+x^2\left(7-5x\right)-7x^2\)
\(P=5x^3-15x+7x^2-5x^3-7x^2\)
\(P=-15x\)
Thay x=5 vào ta được:
\(P=-15\cdot5=-75\)
Kid nhầm rồi :v
5x(x2 - 3) + x2(7 - 5x) - 7x2
= 5x3 - 15x + 7x2 - 5x3 - 7x2
= -15x (1)
Thay x = -5 vào (1), ta có:
(-15).(-5) = 75
a) P = 2x2 - x4 + 2
= -x4 + 2x2 + 2
Đặt t = x2 ( t ≥ 0 )
Khi đó P trở thành :
-t2 + 2t + 2
= -t2 + 2t - 1 + 3
= -( t2 - 2t + 1 ) + 3
= -( t - 1 )2 + 3
( t - 1 )2 ≥ 0 ∀ x => -( t - 1 )2 ≤ 0 ∀ x
=> -( t - 1 ) + 3 ≤ 3 ∀ x
Dấu bằng xảy ra <=> t - 1 = 0 => t = 1 ( tmđk )
Với t = 1 => x2 = 1
=> x = ±1
Vậy PMax = 3 với x = ±1
b) Q = x - x2
= -x2 + x
= -( x2 - x )
= -[ x2 - 2.1/2x + (1/2)2 ] + 1/4
= -( x - 1/2 )2 + 1/4
( x - 1/2 )2 ≥ 0 ∀ x => -( x - 1/2 )2 ≤ 0 ∀ x
=> -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x
Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy QMax = 1/4 khi x = 1/2
c) M = 2x - x2 - 2020
= -x2 + 2x - 2020
= -x2 + 2x - 1 - 2019
= -( x2 - 2x + 1 ) - 2019
= -( x - 1 )2 - 2019
( x - 1 )2 ≥ 0 ∀ x => -( x - 1 )2 ≤ 0 ∀ x
=> -( x - 1 )2 - 2019 ≤ -2019 ∀ x
Dấu bằng xảy ra <=> x - 1 = 0 => x = 1
Vậy MMax = -2019 khi x = 1
d) N = 2x - 2x2 - 3
= -2x2 + 2x - 3
= -2( x2 - x + 1/4 ) - 5/2
= -2( x - 1/2 )2 - 5/2
( x - 1/2 )2 ≥ 0 ∀ x => -2( x - 1/2 )2 ≤ 0 ∀ x
=> -2( x - 1/2 )2 - 5/2 ≤ -5/2 ∀ x
Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy NMax = -5/2 khi x = 1/2
=\(2x^2+3x-10x-15-2x^2+6x+x7\)
\(=\left(2x^2-2x^2\right)+\left(3x+6x+x-10x\right)+\left(-15+7\right)\)
\(=-8\)( ta thay ko co mat cua bien nua )
Vậy giá trị của biểu thức ko phụ thuộc vào giá trị của biến
(x-5)(2x+3)-2x(x-3)+x+7=2x2-7x-15-2x2+6x+x+7=-15+7=-8
Vậy (x-5)(2x+3)-2x(x-3)+x+7 ko phụ thuộc vào x
Q= x2 - 10x + 25 + 1000 =(x-5)2 + 1000 =(1005 -5)2 + 1000 =10002 + 1000 =1001000