Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
a: \(\dfrac{2x-2}{3}>=\dfrac{x+3}{6}\)
=>4x-4>=x+3
=>3x>=7
=>x>=7/3
b: (x+3)^2<(x-2)^2
=>6x+9<4x-4
=>2x<-13
=>x<-13/2
c: \(\dfrac{2x-3}{3}-x< =\dfrac{2x-3}{5}\)
=>2/3x-1-x<=2/5x-3/5
=>-11/15x<2/5
=>x>-6/11
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
Sửa đề: \(A=x^3+x^2y-xy^2-y^3+x^2-y^2+2x+2y+3\)
\(A=x^2\left(x+y\right)-y^2\left(x+y\right)+\left(x-y\right)\left(x+y\right)+2x+2y+3\)
\(=-x^2+y^2+\left(-x+y\right)-2+3\)
\(=-\left(x-y\right)\left(x+y\right)-\left(x-y\right)+1\)
\(=\left(x-y\right)\left(-x-y-1\right)+1\)
\(=\left(x-y\right)\left(1-1\right)+1=1\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
`# \text {04th5}`
`a.`
`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`
`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`
`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`
`= 3xy - 1`
`b.`
\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)
`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`
`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`
`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`
`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`
`= -30`
Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.
a) P = 2x2 - x4 + 2
= -x4 + 2x2 + 2
Đặt t = x2 ( t ≥ 0 )
Khi đó P trở thành :
-t2 + 2t + 2
= -t2 + 2t - 1 + 3
= -( t2 - 2t + 1 ) + 3
= -( t - 1 )2 + 3
( t - 1 )2 ≥ 0 ∀ x => -( t - 1 )2 ≤ 0 ∀ x
=> -( t - 1 ) + 3 ≤ 3 ∀ x
Dấu bằng xảy ra <=> t - 1 = 0 => t = 1 ( tmđk )
Với t = 1 => x2 = 1
=> x = ±1
Vậy PMax = 3 với x = ±1
b) Q = x - x2
= -x2 + x
= -( x2 - x )
= -[ x2 - 2.1/2x + (1/2)2 ] + 1/4
= -( x - 1/2 )2 + 1/4
( x - 1/2 )2 ≥ 0 ∀ x => -( x - 1/2 )2 ≤ 0 ∀ x
=> -( x - 1/2 )2 + 1/4 ≤ 1/4 ∀ x
Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy QMax = 1/4 khi x = 1/2
c) M = 2x - x2 - 2020
= -x2 + 2x - 2020
= -x2 + 2x - 1 - 2019
= -( x2 - 2x + 1 ) - 2019
= -( x - 1 )2 - 2019
( x - 1 )2 ≥ 0 ∀ x => -( x - 1 )2 ≤ 0 ∀ x
=> -( x - 1 )2 - 2019 ≤ -2019 ∀ x
Dấu bằng xảy ra <=> x - 1 = 0 => x = 1
Vậy MMax = -2019 khi x = 1
d) N = 2x - 2x2 - 3
= -2x2 + 2x - 3
= -2( x2 - x + 1/4 ) - 5/2
= -2( x - 1/2 )2 - 5/2
( x - 1/2 )2 ≥ 0 ∀ x => -2( x - 1/2 )2 ≤ 0 ∀ x
=> -2( x - 1/2 )2 - 5/2 ≤ -5/2 ∀ x
Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy NMax = -5/2 khi x = 1/2