Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3+b3+c3=3abc
<=>(a+b)3-3ab(a+b)-3abc+c3=0
<=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab.(a+b+c)=0
<=>(a+b+c)(a2+b2+c2-ab-bc-ac)=0
<=>(a+b+c)(2a2+2b2+2c2-2ab-2bc-2ac)=0
<=>(a+b+c)[(a-b)2+(b-c)2+(c-a)2]=0
<=>a+b+c=0 [(a-b)2+(b-c)2+(c-a)2 khác 0]
=>a2+b2-c2=-2ab;b2+c2-a2=-2bc;c2+a2-b2=-2ac
Suy ra : P=\(-\left(\dfrac{1}{2ab}+\dfrac{1}{2bc}+\dfrac{1}{2ac}\right)=-\dfrac{a+b+c}{2abc}=0\)
\(a^3+b^3+c^3-3abc=1\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\) (1)
Do \(a^2+b^2+c^2-ab-bc-ca>0\Rightarrow a+b+c>0\)
(1)\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca+\dfrac{1}{a+b+c}\)
\(\Leftrightarrow3a^2+3b^2+3c^2=\left(a+b+c\right)^2+\dfrac{1}{a+b+c}\ge3\)
\(\Rightarrow a^2+b^2+c^2\ge1\)
Bạn có thể giải thích phần (1) <=> với cái đó được ko. Mình vẫn chưa hiểu mấy bước sau lắm
Ta có : \(P=a^2+b^2+c^2\)
\(\Rightarrow P+2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Rightarrow P+2=\left(a+b+c\right)^2\ge0\)
\(\Rightarrow P\ge-2\)
Vậy MinP = -2 tại a + b + c = 0 .
Mik thấy a,b,c>0 \(\Rightarrow a+b+c>0\)
\(\Rightarrow2P-2=2a^2+2b^2+2c^2-2ab-2bc-2ca=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\Rightarrow2P\ge2\Rightarrow P\ge1\) Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\dfrac{\sqrt{3}}{3}\) Vậy...
a)
\(A=cos^230^o-sin^230^o=\left(\dfrac{\sqrt{3}}{2}\right)^2-\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2}\);
\(B=cos60^o+sin45^o=\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}\).
Vì vậy \(A< B\).
b)
\(C=\dfrac{2tan30^o}{1-tan^230^o}=\dfrac{2\dfrac{\sqrt{3}}{2}}{1-\left(\dfrac{\sqrt{3}}{2}\right)^2}=\sqrt{3}\).
\(D=\left(-tan135^o\right)tan60^o=-\left(-1\right).\sqrt{3}=\sqrt{3}\).
Vậy \(C=D\).
Lời giải:
Đặt $a-\frac{b}{2}=x; \frac{a}{2}-b=y$ thì $45^0< x< 180^0; -45^0< y< 90^0$
$\cos x=\frac{-1}{4}; 45^0< x< 180^0$ nên $\sin x=\frac{\sqrt{15}}{4}$
$\sin y=\frac{1}{3}; -45^0< y< 90^0$ nên $\cos y=\frac{2\sqrt{2}}{3}$
\(P=72\cos (2x-2y)+49=72[2\cos ^2(x-y)-1]+49=144\cos ^2(x-y)-23\)
\(=144(\cos x\cos y+\sin x\sin y)^2-23=-4\sqrt{30}\)
Đáp án C.
Chọn C.
Ta có: B = 3 - 1 2 + 2 1 2 2 - 3 . 1 2 = - 1 2