K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2022

b)\(P=cos2a-cos(\dfrac{\pi}{3}-a) \\=2cos^2a-1-cos\dfrac{\pi}{3}cosa-sin\dfrac{\pi}{3}sina \\=2.(\dfrac{-2}{5})^2-1-\dfrac{1}{2}.\dfrac{-2}{5}-\dfrac{\sqrt3}{2}.\dfrac{-\sqrt{21}}{5} \\=\dfrac{-24+15\sqrt7}{50}\)

18 tháng 2 2022

a, Vì : \(\pi< a< \dfrac{3\pi}{2}\)  nên \(cos\alpha< 0\) mà \(cos^2\alpha=1-sin^2\alpha=1-\dfrac{4}{25}=\dfrac{21}{25},\)

do đó : \(cos\alpha=-\dfrac{\sqrt{21}}{5}\)

từ đó suy ra : \(tan\alpha=\dfrac{2}{\sqrt{21}},cot\alpha=\dfrac{\sqrt{21}}{2}\)

NV
21 tháng 4 2021

a/\(sina-1=2sin\dfrac{a}{2}.cos\dfrac{a}{2}-sin^2\dfrac{a}{2}-cos^2\dfrac{a}{2}=-\left(sin\dfrac{a}{2}-cos\dfrac{a}{2}\right)^2\)

b/\(P=\dfrac{cosa+cos5a+2cos3a}{sina+sin5a+2sin3a}=\dfrac{2cos3a.cos2a+2cos3a}{2sin3a.cos2a+2sin3a}=\dfrac{2cos3a\left(cos2a+1\right)}{2sin3a\left(cos2a+1\right)}=cot3a\)

c/\(P=sin\left(30+60\right)=sin90=1\)

d/

\(A=cos\dfrac{2\pi}{7}+cos\dfrac{6\pi}{7}+cos\dfrac{4\pi}{7}\Rightarrow A.sin\dfrac{\pi}{7}=sin\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}+sin\dfrac{\pi}{7}cos\dfrac{4\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{6\pi}{7}\)

\(=\dfrac{1}{2}sin\dfrac{3\pi}{7}-\dfrac{1}{2}sin\dfrac{\pi}{7}+\dfrac{1}{2}sin\dfrac{5\pi}{7}-\dfrac{1}{2}sin\dfrac{3\pi}{7}+\dfrac{1}{2}sin\dfrac{7\pi}{7}-\dfrac{1}{2}sin\dfrac{5\pi}{7}\)

\(=-\dfrac{1}{2}sin\dfrac{\pi}{7}\Rightarrow A=-\dfrac{1}{2}\)

e/

\(tan\dfrac{\pi}{24}+tan\dfrac{7\pi}{24}=\dfrac{sin\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}}+\dfrac{sin\dfrac{7\pi}{24}}{cos\dfrac{7\pi}{24}}=\dfrac{sin\dfrac{\pi}{24}cos\dfrac{7\pi}{24}+sin\dfrac{7\pi}{24}cos\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}.cos\dfrac{7\pi}{24}}\)

\(=\dfrac{sin\left(\dfrac{\pi}{24}+\dfrac{7\pi}{24}\right)}{\dfrac{1}{2}cos\dfrac{\pi}{4}+\dfrac{1}{2}cos\dfrac{\pi}{3}}=\dfrac{2sin\dfrac{\pi}{3}}{cos\dfrac{\pi}{4}+cos\dfrac{\pi}{3}}=\dfrac{\sqrt{3}}{\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}+1}\)

21 tháng 4 2021

sina - 1 = sina - sin\(\dfrac{\pi}{2}\)

 

NV
6 tháng 8 2021

\(A.sin\dfrac{\pi}{7}=sin\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)\)

\(=\dfrac{1}{8}sin\left(\pi+\dfrac{\pi}{7}\right)=\dfrac{1}{8}sin\left(-\dfrac{\pi}{7}\right)\)

\(=-\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)

\(\Rightarrow A=-\dfrac{1}{8}\)

12 tháng 4 2022

a.Ta có : \(x\in\left(\pi;\dfrac{3}{2}\pi\right)\Rightarrow cosx< 0\) 

\(cosx=-\sqrt{1-sin^2x}=-\sqrt{1-0,8^2}=-0,6\) 

\(tanx=\dfrac{4}{3};cotx=\dfrac{3}{4}\)

b. cos 2x = \(cos^2x-sin^2x=0,6^2-0,8^2=-0,28\)

\(P=2.cos2x=-0,56\)

\(Q=tan\left(2x+\dfrac{\pi}{3}\right)=\dfrac{tan2x+tan\dfrac{\pi}{3}}{1-tan2x.tan\dfrac{\pi}{3}}=\dfrac{tan2x+\sqrt{3}}{1-tan2x.\sqrt{3}}\)

tan 2x = \(\dfrac{2tanx}{1-tan^2x}=\dfrac{\dfrac{2.4}{3}}{1-\left(\dfrac{4}{3}\right)^2}=\dfrac{-24}{7}\) 

\(Q=\dfrac{-\dfrac{24}{7}+\sqrt{3}}{1+\dfrac{24}{7}.\sqrt{3}}\) \(=\dfrac{-24+7\sqrt{3}}{7+24\sqrt{3}}\) 

30 tháng 3 2017

\(A=cos3a+2cos\left(\pi-3a\right)sin^2\left(\dfrac{\pi}{4}-1,5a\right)\)

\(=cos3a-2cos3a\dfrac{1-cos\left(\dfrac{\pi}{2}-3a\right)}{2}\)

\(=cos3a-cos3a\left(1-sin3a\right)\)

\(=cos3a-cos3a+cos3asin3a=\dfrac{1}{2}sin6a\)

\(=\dfrac{1}{2}sin\left(6\dfrac{5\pi}{6}\right)=\dfrac{1}{2}sin\left(4\pi+\pi\right)=\dfrac{1}{2}sin\pi=0\)

30 tháng 3 2017

Vì a=\(\dfrac{5\pi}{6}\) nên: \(3a=\dfrac{5\pi}{2}\) => \(\cos3a=0\)

\(\pi-3a=\pi-\dfrac{5\pi}{2}=\dfrac{-3\pi}{2}\)

=> \(\cos\left(\pi-3a\right)=0\)

17 tháng 4 2021

Đề có thiếu gì hông em oii !!

17 tháng 4 2021

Không thiếu gì ạ!

\(=\dfrac{tan\left(\dfrac{pi}{2}+x\right)\cdot sin\left(-x\right)\cdot cos\left(x-pi\right)}{cos\left(\dfrac{pi}{2}-x\right)\cdot sin\left(x+pi\right)}\)

\(=\dfrac{-cotx\cdot sin\left(-x\right)\cdot\left(-cosx\right)}{sinx\cdot-sinx}\)

\(=\dfrac{cotx\cdot sinx\left(-1\right)\cdot cosx}{-sinx\cdot sinx}=\dfrac{\dfrac{cosx}{sinx}\cdot cosx}{sinx}=\dfrac{cos^2x}{sin^2x}=cot^2x\)

NV
6 tháng 8 2021

\(A=cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\left(-cos\left(\pi-\dfrac{5\pi}{7}\right)\right)=-cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(\Rightarrow A.sin\left(\dfrac{\pi}{7}\right)=-sin\left(\dfrac{\pi}{7}\right).cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=-\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)=-\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=-\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)=\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)

\(\Rightarrow A=\dfrac{1}{8}\)

\(B=\dfrac{\sqrt{3}}{2}.cos48^0.cos24^0.cos12^0\)

\(\Rightarrow B.sin12^0=\dfrac{\sqrt{3}}{2}sin12^0.cos12^0cos24^0.cos48^0\)

\(=\dfrac{\sqrt{3}}{4}sin24^0cos24^0cos48^0=\dfrac{\sqrt{3}}{8}sin48^0.cos48^0\)

\(=\dfrac{\sqrt{3}}{16}sin96^0=\dfrac{\sqrt{3}}{16}cos6^0\)

\(\Rightarrow2B.sin6^0.cos6^0=\dfrac{\sqrt{3}}{16}cos6^0\Rightarrow B=\dfrac{\sqrt{3}}{32.sin6^0}\)

Biểu thức này ko thể rút gọn tiếp được