K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có MN//BC

nên AN/NC=AM/MB

=>x/7=2/4=1/2

=>x=3,5

b Xét ΔBDE có AC//DE

nên BA/BD=BC/BE

=>3/x=5/8,5=10/17

=>x=51/10

c: Xét ΔHIK có PQ//IK

nên HP/HI=HQ/HK

=>x/8=0,65

=>x=5,2

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) Xét tam giác \(ABC\) ta có \(MN//BC\), theo định lí Thales ta có:

\(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}} \Leftrightarrow \frac{2}{4} = \frac{x}{7} \Rightarrow x = \frac{{2.7}}{4} = 3,5\)

Vậy \(x = 3,5\).

b) Vì \(\left\{ \begin{array}{l}AC \bot BD\\DE \bot BD\end{array} \right. \Rightarrow AC//DE\)

Xét tam giác \(BDE\) ta có \(AC//DE\), theo định lí Thales ta có:

\(\frac{{AB}}{{BD}} = \frac{{BC}}{{BE}} \Leftrightarrow \frac{3}{x} = \frac{5}{{3,5 + 5}} \Rightarrow x = \frac{{3.\left( {3,5 + 5} \right)}}{5} = 5,1\)

Vậy \(x = 5,1\).

c) Xét tam giác \(HIK\) ta có \(PQ//IK\), theo định lí Thales ta có:

\(\frac{{HP}}{{HI}} = \frac{{HQ}}{{HK}} \Leftrightarrow \frac{x}{8} = \frac{{6,5}}{{6,5 + 3,5}} \Rightarrow x = \frac{{8.6,5}}{{\left( {6,5 + 3,5} \right)}} = 5,2\)

Vậy \(x = 5,2\).

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

- Hình a:

Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:

\(\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}x \Leftrightarrow 6 = \frac{1}{2}x \Leftrightarrow x = 6:\frac{1}{2} = 12\)

- Hình b:

Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:

\(\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}\left( {x + 3} \right) \Leftrightarrow 7 = \frac{1}{2}\left( {x + 3} \right) \Leftrightarrow \left( {x + 3} \right) = 7:\frac{1}{2} = 14\)

\( \Rightarrow x = 14 - 3 \Leftrightarrow x = 11\).

- Hình c

Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:

\[\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}.58 \Leftrightarrow \left( {5x - 1} \right) = \frac{1}{2}.58\]

\[ \Leftrightarrow \left( {5x - 1} \right) = 29 \Leftrightarrow 5x = 30 \Leftrightarrow x = 30:5 \Leftrightarrow x = 6\].

a: MN là đường trung bình

=>MN=BC/2

=>x=6*2=12

b: MN là đường trung bình

=>2x+3=2*7=14

=>2x=11

=>x=11/2

c: MN là đường trung bình

=>5x-1=58/2=29

=>5x=30

=>x=6

10 tháng 9 2023

\(x^2=1^2+1^2\left(pythagore\right)\\ \Rightarrow x=\sqrt{2}\\ \sqrt{5}^2=1^2+y^2\left(pythagore\right)\\ \Rightarrow y=\sqrt{4}=2\)

10 tháng 9 2023

a) \(x^2=1^2+1^2=2\Rightarrow x=\sqrt[]{2}\)

b) \(\left(\sqrt[]{5}\right)^2=y^2+1^2\Rightarrow y^2=5-1=4\Rightarrow y=2\)

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Điểm \(O\) là gốc tọa độ nên \(O\left( {0;0} \right)\)

Từ điểm \(E\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại – 3  và cắt \(Oy\) tại 4 nên \(E\left( { - 3;4} \right)\).

Từ điểm \(F\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại 3 và cắt \(Oy\) tại – 5 nên \(E\left( {3; - 5} \right)\).

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

a) Dùng Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 trong công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.

Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trên màn hình hiện lên cửa sổ như sau:

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

c) Tương tự, ta vẽ một hình thoi ABCD có cạnh 4 cm theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.

Bước 2. Vẽ điểm C sao cho BC = 4 cm.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm B, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn điểm C bất kỳ nằm trên đường tròn tâm B.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm C, nhập bán kính bằng 4.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Lần lượt nháy chuột đường tròn tâm A và đường tròn C.

Chọn công cụ Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để nối B với C, C với D, D với A.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.

Luyện tập 2 trang 117 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Xét tam giác vuông \(PQR\) có:

\(\widehat P + \widehat Q + \widehat R = 180^\circ  \Leftrightarrow \widehat P + 90^\circ  + 42^\circ  = 180^\circ  \Rightarrow \widehat P = 180^\circ  - 90^\circ  - 42^\circ  = 48^\circ \)

Xét tam giác vuông \(UVT\) có:

\(U{V^2} = U{T^2} + V{T^2} \Leftrightarrow {6^2} = U{T^2} + {4^2} \Rightarrow U{T^2} = {6^2} - {4^2} = 20 \Rightarrow UT = 2\sqrt 5 \)

Xét tam giác vuông \(DEF\) có:

\(E{F^2} = D{E^2} + D{F^2} \Leftrightarrow E{F^2} = {9^2} + {12^2} \Rightarrow E{F^2} = 225 \Rightarrow EF = 15\)

Xét tam giác vuông \(MNK\) có:

\(K{N^2} = K{M^2} + M{N^2} \Leftrightarrow {9^2} = K{M^2} + {6^2} \Rightarrow K{M^2} = {9^2} - {6^2} = 45 \Rightarrow KM = 3\sqrt 5 \)

Xét tam giác vuông \(IGH\) có:

\(I{H^2} = H{G^2} + I{G^2} \Leftrightarrow I{H^2} = 7,{5^2} + {10^2} \Rightarrow I{H^2} = 156,25 \Rightarrow IH = 12,5\)

- Xét \(\Delta ABC\) và \(\Delta QPR\) có:

\(\widehat B = \widehat P = 48^\circ \) (chứng minh trên)

\(\widehat A = \widehat Q = 90^\circ \)

Do đó, \(\Delta ABC\backsim\Delta QPR\) (g.g)

- Xét \(\Delta UTV\) và \(\Delta KMN\) có:

\(\widehat T = \widehat M = 90^\circ \)

\(\frac{{UT}}{{KM}} = \frac{{2\sqrt 5 }}{{3\sqrt 5 }} = \frac{2}{3};\frac{{VT}}{{MN}} = \frac{4}{6} = \frac{2}{3}\)

Do đó, \(\Delta UTV\backsim\Delta KMN\) (c.g.c)

- Xét \(\Delta DEF\) và \(\Delta GHI\) có:

\(\widehat D = \widehat G = 90^\circ \)

\(\frac{{HG}}{{DE}} = \frac{{7,5}}{9} = \frac{5}{6};\frac{{IG}}{{DF}} = \frac{{10}}{{12}} = \frac{5}{6}\)

Do đó, \(\Delta DEF\backsim\Delta GHI\) (c.g.c).

11 tháng 9 2023

Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 1 2024

a) Dùng Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 trong công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để kiểm tra DE, ta thấy độ dài đoạn thẳng DE bằng 4 cm.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

b) Lưu hình vẽ ở HĐ3 thành tệp hth.png.

Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Trên màn hình hiện lên cửa sổ như sau:

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

c) Vẽ hình thang cân ADEC có AD // EC, AD = 6 cm, CE = 4 cm, AC = DE = 3 cm theo các bước sau:

Bước 1. Vẽ đoạn thẳng AB và có độ dài bằng AD – EC = 2 cm tương tự như Bước 1 của HĐ1.

Bước 2. Vẽ tam giác ABC có BC = 3 cm (độ dài của DE), AC = 3 cm.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm A, nhập bán kính bằng 3.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8  → Nháy chuột vào điểm B, nhập bán kính bằng 3.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Lần lượt nháy chuột vào hai đường tròn vừa vẽ, ta được 2 giao điểm, chọn 1 điểm là điểm C.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Chọn điểm A → Chọn điểm C.

 Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Chọn điểm B → Chọn điểm C.

Bước 3. Vẽ điểm D nằm trên tia AB sao cho AD = 6 cm.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Nháy chuột vào điểm A, nhập bán kính bằng 6.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột lần lượt vào các điểm A, B.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 →  Lần lượt nháy chuột vào tia AB và đường tròn vừa vẽ, ta được điểm D.

Bước 4. Vẽ điểm E sao cho DE // BC và CE // AB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm C → Nháy chuột vào đoạn thẳng AB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Nháy chuột vào điểm D → Nháy chuột vào đoạn thẳng CB.

Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Chọn Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 → Lần lượt nháy chuột vào đường thẳng vừa vẽ.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ẩn các đường tròn, các đường thẳng, đoạn thẳng AB, BC và điểm B. Chọn công cụ Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8 để nối A với D, D với E, E với C và thu được hình thang cân ADEC thỏa mãn yêu cầu đề bài.

Luyện tập 3 trang 119 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Quan sát hình 8 ta thấy có hai cặp hình đồng dạng với nhau:

- Cặp thứ nhất là Hình 8a và Hình 8c vì khi ta thu nhỏ hình 8a với một tỉ số \({k_1}\) thì thu được một hình đồng dạng phối cảnh bằng với hình 8c.

- Cặp thứ nhất là Hình 8b và Hình 8d vì khi ta thu nhỏ hình 8d với một tỉ số \({k_2}\) thì thu được một hình đồng dạng phối cảnh bằng với hình 8b.

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Tỉ số:

\(\frac{{DE}}{{AC}} = \frac{6}{8} = \frac{3}{4};\frac{{EF}}{{BC}} = \frac{{15}}{{20}} = \frac{3}{4}\).

Xét tam giác\(DEF\) và tam giác\(ABC\) có:

\(\frac{{DE}}{{AC}} = \frac{{EF}}{{BC}} = \frac{3}{4}\) (chứng minh trên)

Do đó, \(\Delta DEF\backsim\Delta ABC\).

Tỉ số:

\(\frac{{DE}}{{MN}} = \frac{6}{3} = 2;\frac{{EF}}{{NP}} = \frac{{15}}{6} = \frac{5}{2}\).

Vì \(\frac{{DE}}{{MN}} \ne \frac{{EF}}{{NP}}\) nên hai tam giác \(DEF\) và \(MNP\) không đồng dạng với nhau.

Tỉ số:

\(\frac{{DE}}{{RS}} = \frac{6}{4} = \frac{3}{2};\frac{{EF}}{{ST}} = \frac{{15}}{{12}} = \frac{5}{4}\).

Vì \(\frac{{DE}}{{RS}} \ne \frac{{EF}}{{ST}}\) nên hai tam giác \(DEF\) và \(SRT\) không đồng dạng với nhau.