
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


- Hình a:
Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:
\(\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}x \Leftrightarrow 6 = \frac{1}{2}x \Leftrightarrow x = 6:\frac{1}{2} = 12\)
- Hình b:
Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:
\(\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}\left( {x + 3} \right) \Leftrightarrow 7 = \frac{1}{2}\left( {x + 3} \right) \Leftrightarrow \left( {x + 3} \right) = 7:\frac{1}{2} = 14\)
\( \Rightarrow x = 14 - 3 \Leftrightarrow x = 11\).
- Hình c
Vì \(MN\) là đường trung bình của tam giác \(ABC\) nên theo tính chất đường trung bình ta có:
\[\left\{ \begin{array}{l}MN//BC\\MN = \frac{1}{2}BC\end{array} \right. \Rightarrow MN = \frac{1}{2}.58 \Leftrightarrow \left( {5x - 1} \right) = \frac{1}{2}.58\]
\[ \Leftrightarrow \left( {5x - 1} \right) = 29 \Leftrightarrow 5x = 30 \Leftrightarrow x = 30:5 \Leftrightarrow x = 6\].
a: MN là đường trung bình
=>MN=BC/2
=>x=6*2=12
b: MN là đường trung bình
=>2x+3=2*7=14
=>2x=11
=>x=11/2
c: MN là đường trung bình
=>5x-1=58/2=29
=>5x=30
=>x=6

\(x^2=1^2+1^2\left(pythagore\right)\\ \Rightarrow x=\sqrt{2}\\ \sqrt{5}^2=1^2+y^2\left(pythagore\right)\\ \Rightarrow y=\sqrt{4}=2\)
a) \(x^2=1^2+1^2=2\Rightarrow x=\sqrt[]{2}\)
b) \(\left(\sqrt[]{5}\right)^2=y^2+1^2\Rightarrow y^2=5-1=4\Rightarrow y=2\)

Điểm \(O\) là gốc tọa độ nên \(O\left( {0;0} \right)\)
Từ điểm \(E\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại – 3 và cắt \(Oy\) tại 4 nên \(E\left( { - 3;4} \right)\).
Từ điểm \(F\) ta vẽ vuông góc với \(Ox;Oy\) cắt \(Ox\) tại 3 và cắt \(Oy\) tại – 5 nên \(E\left( {3; - 5} \right)\).

a) Dùng trong công cụ
để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.
b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.
Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ điểm C sao cho BC = 4 cm.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm B, nhập bán kính bằng 4.
Chọn công cụ → Chọn
→ Chọn điểm C bất kỳ nằm trên đường tròn tâm B.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm C, nhập bán kính bằng 4.
Chọn công cụ → Chọn
→ Lần lượt nháy chuột đường tròn tâm A và đường tròn C.
Chọn công cụ để nối B với C, C với D, D với A.
Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.

a: Gọi M,N lần lượt là trung điểm của AB,CD
Ta có: ΔIAB vuông cân tại I
=>IA=IB; \(\hat{AIB}=90^0\) ; \(\hat{IAB}=\hat{IBA}=45^0\)
ΔKDC vuông cân tại K
=>KD=KC; \(\hat{DKC}=90^0;\hat{KDC}=\hat{KCD}=45^0\)
ΔIAB vuông tại I
=>\(IA^2+IB^2=AB^2\)
=>\(2\cdot IA^2=CD^2\left(1\right)\)
ΔKCD vuông tại K
=>\(KD^2+KC^2=DC^2\)
=>\(2\cdot KD^2=CD^2\left(2\right)\)
Từ (1),(2) suy ra IA=KD
mà IA=IB và KD=KC
nên IA=IB=KD=KC
Ta có: ΔIAB cân tại I
mà IM là đường trung tuyến
nên IM⊥AB tại M
Ta có: \(AM=MB=\frac{AB}{2}\)
\(DN=NC=\frac{DC}{2}\)
mà AB=CD
nên AM=MB=DN=NC
Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Hình bình hành AMND có \(\hat{DAM}=90^0\)
nên AMND là hình chữ nhật
=>AM⊥MN
=>MN⊥AB
ΔKDC cân tại K
mà KN là đường trung tuyến
nên KN⊥DC tại N
mà DC//AB
nên KN⊥AB
mà MN⊥AB
và KN,MN có điểm chung là N
nên K,N,M thẳng hàng(1)
Ta có: IM⊥AB
MN⊥AB
mà IM,MN có điểm chung là M
nên I,M,N thẳng hàng(2)
Từ (1),(2) suy ra K,N,M,I thẳng hàng
Xét ΔEIK có AD//IK
nên \(\frac{EA}{AI}=\frac{ED}{DK}\)
mà AI=DK
nên EA=ED
Ta có: EA+AI=EI
ED+DK=EK
mà EA=ED và AI=DK
nên EI=EK
=>E nằm trên đường trung trực của IK(3)
Xét ΔFKI có BC//KI
nên \(\frac{FB}{BI}=\frac{FC}{CK}\)
mà BI=CK
nên FB=FC
Ta có: FB+BI=FI
FC+CK=FK
mà FB=FC và BI=CK
nên FI=FK
=>F nằm trên đường trung trực của IK(4)
từ (3),(4) suy ra FE là đường trung trực của IK
=>FE⊥IK
mà IK⊥CD
nên FE//CD
b: Xét ΔKEF có DC//EF
nên \(\frac{KD}{DE}=\frac{KC}{CF}\)
mà KD=KC
nên DE=CF
Ta có: KD+DE=KE
KC+CF=KF
mà KD=KC và DE=CF
nên KE=KF
=>IE=EK=KF=FI
=>IEKF là hình thoi
Hình thoi IEKF có \(\hat{EIF}=90^0\)
nên IEKF là hình vuông

Xét tam giác vuông \(PQR\) có:
\(\widehat P + \widehat Q + \widehat R = 180^\circ \Leftrightarrow \widehat P + 90^\circ + 42^\circ = 180^\circ \Rightarrow \widehat P = 180^\circ - 90^\circ - 42^\circ = 48^\circ \)
Xét tam giác vuông \(UVT\) có:
\(U{V^2} = U{T^2} + V{T^2} \Leftrightarrow {6^2} = U{T^2} + {4^2} \Rightarrow U{T^2} = {6^2} - {4^2} = 20 \Rightarrow UT = 2\sqrt 5 \)
Xét tam giác vuông \(DEF\) có:
\(E{F^2} = D{E^2} + D{F^2} \Leftrightarrow E{F^2} = {9^2} + {12^2} \Rightarrow E{F^2} = 225 \Rightarrow EF = 15\)
Xét tam giác vuông \(MNK\) có:
\(K{N^2} = K{M^2} + M{N^2} \Leftrightarrow {9^2} = K{M^2} + {6^2} \Rightarrow K{M^2} = {9^2} - {6^2} = 45 \Rightarrow KM = 3\sqrt 5 \)
Xét tam giác vuông \(IGH\) có:
\(I{H^2} = H{G^2} + I{G^2} \Leftrightarrow I{H^2} = 7,{5^2} + {10^2} \Rightarrow I{H^2} = 156,25 \Rightarrow IH = 12,5\)
- Xét \(\Delta ABC\) và \(\Delta QPR\) có:
\(\widehat B = \widehat P = 48^\circ \) (chứng minh trên)
\(\widehat A = \widehat Q = 90^\circ \)
Do đó, \(\Delta ABC\backsim\Delta QPR\) (g.g)
- Xét \(\Delta UTV\) và \(\Delta KMN\) có:
\(\widehat T = \widehat M = 90^\circ \)
\(\frac{{UT}}{{KM}} = \frac{{2\sqrt 5 }}{{3\sqrt 5 }} = \frac{2}{3};\frac{{VT}}{{MN}} = \frac{4}{6} = \frac{2}{3}\)
Do đó, \(\Delta UTV\backsim\Delta KMN\) (c.g.c)
- Xét \(\Delta DEF\) và \(\Delta GHI\) có:
\(\widehat D = \widehat G = 90^\circ \)
\(\frac{{HG}}{{DE}} = \frac{{7,5}}{9} = \frac{5}{6};\frac{{IG}}{{DF}} = \frac{{10}}{{12}} = \frac{5}{6}\)
Do đó, \(\Delta DEF\backsim\Delta GHI\) (c.g.c).

Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:

a) Dùng trong công cụ
để kiểm tra DE, ta thấy độ dài đoạn thẳng DE bằng 4 cm.
Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
c) Vẽ hình thang cân ADEC có AD // EC, AD = 6 cm, CE = 4 cm, AC = DE = 3 cm theo các bước sau:
Bước 1. Vẽ đoạn thẳng AB và có độ dài bằng AD – EC = 2 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ tam giác ABC có BC = 3 cm (độ dài của DE), AC = 3 cm.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm A, nhập bán kính bằng 3.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm B, nhập bán kính bằng 3.
Chọn công cụ → Chọn
→ Lần lượt nháy chuột vào hai đường tròn vừa vẽ, ta được 2 giao điểm, chọn 1 điểm là điểm C.
Chọn công cụ → Chọn
→ Chọn điểm A → Chọn điểm C.
Chọn công cụ → Chọn
→ Chọn điểm B → Chọn điểm C.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm A, nhập bán kính bằng 6.
Chọn công cụ → Chọn
→ Nháy chuột lần lượt vào các điểm A, B.
Chọn công cụ → Chọn
→ Lần lượt nháy chuột vào tia AB và đường tròn vừa vẽ, ta được điểm D.
Bước 4. Vẽ điểm E sao cho DE // BC và CE // AB.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm C → Nháy chuột vào đoạn thẳng AB.
Chọn công cụ → Chọn
→ Nháy chuột vào điểm D → Nháy chuột vào đoạn thẳng CB.
Chọn công cụ → Chọn
→ Lần lượt nháy chuột vào đường thẳng vừa vẽ.
Ẩn các đường tròn, các đường thẳng, đoạn thẳng AB, BC và điểm B. Chọn công cụ để nối A với D, D với E, E với C và thu được hình thang cân ADEC thỏa mãn yêu cầu đề bài.

Quan sát hình 8 ta thấy có hai cặp hình đồng dạng với nhau:
- Cặp thứ nhất là Hình 8a và Hình 8c vì khi ta thu nhỏ hình 8a với một tỉ số \({k_1}\) thì thu được một hình đồng dạng phối cảnh bằng với hình 8c.
- Cặp thứ nhất là Hình 8b và Hình 8d vì khi ta thu nhỏ hình 8d với một tỉ số \({k_2}\) thì thu được một hình đồng dạng phối cảnh bằng với hình 8b.
a: Xét ΔABC có MN//BC
nên AN/NC=AM/MB
=>x/7=2/4=1/2
=>x=3,5
b Xét ΔBDE có AC//DE
nên BA/BD=BC/BE
=>3/x=5/8,5=10/17
=>x=51/10
c: Xét ΔHIK có PQ//IK
nên HP/HI=HQ/HK
=>x/8=0,65
=>x=5,2
a) Xét tam giác \(ABC\) ta có \(MN//BC\), theo định lí Thales ta có:
\(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}} \Leftrightarrow \frac{2}{4} = \frac{x}{7} \Rightarrow x = \frac{{2.7}}{4} = 3,5\)
Vậy \(x = 3,5\).
b) Vì \(\left\{ \begin{array}{l}AC \bot BD\\DE \bot BD\end{array} \right. \Rightarrow AC//DE\)
Xét tam giác \(BDE\) ta có \(AC//DE\), theo định lí Thales ta có:
\(\frac{{AB}}{{BD}} = \frac{{BC}}{{BE}} \Leftrightarrow \frac{3}{x} = \frac{5}{{3,5 + 5}} \Rightarrow x = \frac{{3.\left( {3,5 + 5} \right)}}{5} = 5,1\)
Vậy \(x = 5,1\).
c) Xét tam giác \(HIK\) ta có \(PQ//IK\), theo định lí Thales ta có:
\(\frac{{HP}}{{HI}} = \frac{{HQ}}{{HK}} \Leftrightarrow \frac{x}{8} = \frac{{6,5}}{{6,5 + 3,5}} \Rightarrow x = \frac{{8.6,5}}{{\left( {6,5 + 3,5} \right)}} = 5,2\)
Vậy \(x = 5,2\).