K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

A = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (24 - 1)(24 + 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (28 - 1)(28 + 1)(216 + 1)(232 + 1) - 264

A = (216 - 1)(216 + 1)(232 + 1) - 264

A = (232 - 1)(232 + 1) - 264

A = 264 - 1 - 264

A = -1

10 tháng 8 2023

7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)

\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)

\(A=-\left(1+2+3+...+2004\right)+2005^2\)

\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)

\(A=-1002.2005+2005^2\)

\(A=2005\left(2005-1002\right)=2005.1003=2011015\)

10 tháng 8 2023

8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{64}-1\right)-2^{64}\)

\(B=-1\)

25 tháng 5 2018

Phải là (2+1)(2²+1)(2⁴+1)...(2³²+1)- 2^64

(2+1)(2²+1)(2⁴+1)...(2³²+1)

=(2-1)(2+1)(2²+1)(2⁴+1)...(2³²+1)

=(2²-1)(2²+1)(2⁴+1)...(2³²+1)

=(2⁴-1)(2⁴+1)...(2³²+1)=…=2^64-1

Vậy C=-1

17 tháng 8 2019

Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Rightarrow A=2^{64}-1\)

\(\Rightarrow B=2^{64}-1-2^{64}=-1\)

17 tháng 8 2019

Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)=2^{64}-1\)

Thay 264 - 1 vào B, ta được :

\(2^{64}-1-2^{64}=-1\)

18 tháng 10 2015

Phân tích 3=4-1=\(2^2-1\)