K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2016

Đặt \(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{5050}\right)\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{10100}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

\(\Rightarrow\frac{1}{2}A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow\frac{1}{2}A=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}=\frac{100}{101}\)

\(\Rightarrow A=\frac{100}{101}:\frac{1}{2}=\frac{100}{101}.2=\frac{200}{101}=1\frac{99}{101}\)

16 tháng 7 2016

co (x-1):1+1=x(so hang)

(x+1)x:2=5050

(x+1)x=10100

(x+1)x=101.100

vay x = 100

16 tháng 7 2016

1 + 2 + 3 + ...+ x = 5050

(1 + x) × x : 2 = 5050

(1 + x) × x = 5050 × 2

(1 + x) × x = 10100

(1 + x) × x = 101 × 100

=> x = 100

Vậy x = 100

18 tháng 8 2018

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2016}{2018}\)

<=>  \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1008}{1009}\)

<=>  \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1008}{1009}\)

<=>   \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{504}{1009}\)

<=>  \(\frac{1}{2}-\frac{1}{x+1}=\frac{504}{1009}\)

<=>  \(\frac{1}{x+1}=\frac{1}{2018}\)

=>  \(x+1=2018\)

<=>  \(x=2017\)

18 tháng 8 2018

cảm ơn bạn

1 tháng 8 2017

\(C=\frac{3}{1}+\frac{3}{3}+\frac{3}{6}+\frac{3}{10}+....+\frac{3}{5050}\)

\(C=\frac{6}{2}+\frac{6}{6}+\frac{6}{12}+\frac{6}{20}+...+\frac{6}{10100}\)

\(C=\frac{6}{1.2}+\frac{6}{2.3}+\frac{6}{3.4}+\frac{6}{4.5}+....+\frac{6}{100.101}\)

\(C=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(C=6.\left(1-\frac{1}{101}\right)=6.\frac{100}{101}=\frac{600}{601}\)

Vậy \(C=\frac{600}{601}\)

\(D=\frac{1}{1.3.5}+\frac{1}{3.5.7}+....+\frac{1}{2009.2011.2013}\)

\( D=\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{2009.2011.2013}\right)-\left(\frac{1}{1.3.5}+\frac{1}{3.5.7}+...+\frac{1}{2009.2011.2013}\right)\)

\(D=\frac{1}{4}.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{2009.2011}-\frac{1}{2011.2013}\right)\)

\(D=\frac{1}{4}.\left(\frac{1}{1.3}-\frac{1}{2011.2013}\right)=\frac{1}{4}.\frac{1349380}{4048143}=\frac{1349380}{16192572}\)

Vậy \(D=\frac{1349380}{16192572}\)