K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x=3y=2z\)

\(\Rightarrow\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

\(\Rightarrow\frac{2x}{2}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{2-6+12}=\frac{48}{8}=6\)

Rồi thế vào là ra thôi :

 \(\frac{2x}{2}=6\Rightarrow x=..........\)

Rồi tương tự thôi

9 tháng 8 2016

6)

\(x=3y=2z\)

\(\Rightarrow\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)

\(\Rightarrow\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{24}{9}\)

\(\Rightarrow\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}\)

9 tháng 8 2016

7)

\(2x=3y=-2z\)

\(\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)

23 tháng 11 2023

Ta có: \(\left\{{}\begin{matrix}\left(2x-3y\right)^{2018}\ge0\forall x,y\\\left(3y-4z\right)^{2020}\ge0\forall y,z\\\left|2x+3y-z-63\right|\ge0\forall x,y,z\end{matrix}\right.\)

\(\Rightarrow\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|\ge0\forall x,y,z\)

Mà: \(\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|=0\)

nên: \(\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\2x+3y-z-63=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\z=2x+3y-63\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=4z\\3y=4z\\z=4z+4z-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4z:2\\y=4z:3\\z=8z-63\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=4z:3\\-7z=-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=4\cdot9:3=12\\z=9\end{matrix}\right.\)

Vậy \(x=18;y=12;z=9\).

$Toru$

13 tháng 10 2016

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{z}{1,25}=\frac{2x-3y+z}{3-4+1,25}=\frac{49}{0,25}=196\Rightarrow\hept{\begin{cases}2x=196.3=588\\3y=196.4=784\\4z=196.5=980\end{cases}\Rightarrow\hept{\begin{cases}x=294\\y=261\frac{1}{3}\\z=245\end{cases}}31}\)

15 tháng 10 2021

Tính chất của dãy tỉ số bằng nhau

15 tháng 10 2021

thôi sai rồi

người ta cho có x với z mà

13 tháng 12 2018

Vì 2x = 3y ; 2y = 3z

=> \(\frac{x}{3}=\frac{y}{2};\frac{y}{3}=\frac{z}{2}\)

=> \(\frac{x}{9}=\frac{y}{6};\frac{y}{6}=\frac{z}{4}\)

=> \(\frac{x}{9}=\frac{y}{6}=\frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau .

\(\frac{x}{9}=\frac{y}{6}=\frac{z}{4}=\frac{2x+3y-4z}{2.9+3.6-4.4}=\frac{40}{20}=2\)

Do đó :

\(\frac{x}{9}=2\)=> \(x=2.9=18\)

\(\frac{y}{6}=2\)=> \(y=2.6=12\)

\(\frac{z}{4}=2\)=> \(z=2.4=8\)

Vậy x = 18 ; y = 12 ; z = 8

Hok tốt

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

a.

$7x-2y=5x-3y$

$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:

$-y+3y=20$

$2y=20$

$\Rightarrow y=10$. 

$x=\frac{-y}{2}=\frac{-10}{2}=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

b.

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$

$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$

$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$ 

 

29 tháng 11 2016

a) Giải:

Ta có: \(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=\frac{-1,8}{9}=-0,2\)

+) \(\frac{x}{6}=-0,2\Rightarrow x=-1,2\)

+) \(\frac{y}{4}=-0,2\Rightarrow y=-0,8\)

+) \(\frac{z}{3}=-0,2\Rightarrow z=-0,6\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(-1,2;-0,8;-0,6\right)\)

b) Giải:

Ta có: \(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{20}=\frac{y}{8}\)

\(3y=8z\Rightarrow\frac{y}{8}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{x+2y+z}{20+16+3}=\frac{-39}{39}=-1\)

+) \(\frac{x}{20}=-1\Rightarrow x=-20\)

+) \(\frac{y}{8}=-1\Rightarrow y=-8\)

+) \(\frac{z}{3}=-1\Rightarrow z=-3\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(-20;-8;-3\right)\)

29 tháng 11 2016

Ta có :

\(2x=3y=4x\)

\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)

\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=-\frac{1,8}{9}=-\frac{1}{5}\)

\(\Rightarrow\begin{cases}x=-\frac{6}{5}\\y=-\frac{4}{5}\\z=-\frac{3}{5}\end{cases}\)

b)

\(\begin{cases}2x=5y\\3y=8z\end{cases}\)

\(\Rightarrow\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)

\(\Rightarrow\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)

\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}=\frac{2y+x+z}{16+20+3}=-\frac{39}{39}=-1\)

\(\Rightarrow\begin{cases}x=-20\\y=-8\\z=-3\end{cases}\)

16 tháng 10 2019

MIK LM CÂU KHÓ NHẤT NHÁ!

c) Có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=\frac{5}{4}=15\end{matrix}\right.\)

Vậy...

16 tháng 10 2019

a) Ta có: \(\frac{1}{2}x=\frac{3}{4}z=\frac{2}{3}y.\)

=> \(\frac{x}{2}=\frac{3z}{4}=\frac{2y}{3}\)

=> \(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}\)\(x-y=15.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{z}{\frac{4}{3}}=\frac{y}{\frac{3}{2}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\end{matrix}\right.\)

Vậy \(\left(x;z;y\right)=\left(60;40;45\right).\)

Chúc bạn học tốt!