\(2x=3y=4z\)va  \(2x-y+z=11\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2019

a, \(2x=3y=4z\) và 2x - y + z = 11

Ta có : \(2x=3y=4z\)=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)=> \(\frac{2x}{12}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{12}=\frac{y}{4}=\frac{z}{3}=\frac{2x-y+z}{12-4+3}=\frac{11}{11}=1\)

=> \(\hept{\begin{cases}\frac{x}{6}=1\\\frac{y}{4}=1\\\frac{z}{3}=1\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=4\\z=3\end{cases}}\)

b, \(2x=3y=4z=5t\)và x + y + z + t = 77

Ta có : \(2x=3y=4z=5t\)=> \(\frac{2x}{60}=\frac{3y}{60}=\frac{4z}{60}=\frac{5t}{60}\)=> \(\frac{x}{30}=\frac{y}{20}=\frac{z}{15}=\frac{t}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{30}=\frac{y}{20}=\frac{z}{15}=\frac{t}{12}=\frac{x+y+z+t}{30+20+15+12}=\frac{77}{77}=1\)

=> x = 30 , y = 20 , z = 15 , t = 12

21 tháng 12 2018

Ta có: \(\dfrac{2x}{3}\) = \(\dfrac{3y}{4}\) = \(\dfrac{4z}{5}\) suy ra: \(\dfrac{2x}{60}\) = \(\dfrac{3y}{60}\) = \(\dfrac{4z}{60}\)

Suy ra:\(\dfrac{x}{30}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{15}\)

Theo bài ra, ta có:\(\dfrac{x}{30}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{15}\)

mà x-y-z = -49

Áp dụng ính chất của dãy ti số bằng nhau, ta có:

\(\dfrac{x}{30}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{15}\) = \(\dfrac{x-y-z}{30-20-15}\) = \(\dfrac{-49}{-5}\)= 9,8

Suy ra: \(\dfrac{x}{30}\) = 9,8 suy ra: x = 9,8. 30 = 294

\(\dfrac{y}{20}\) = 9,8 suy ra: y = 9,8. 20 = 196

\(\dfrac{z}{15}\) = 9,8 suy ra: z = 9,8. 15=147

vậy x = 294; y = 169 và z = 147

chúc bn hk tốthihi

(câu trả lời của mk sai thik mong thông cảm nhé)

2 tháng 8 2018

Biểu đồBiểu đồ

2 tháng 8 2018

a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

⇒2x = 3.30 = 90 ⇒ x = 45

3y = 3.60 = 180 ⇒ y = 60

z = 3.28 = 84

Ý b) có gì đó sai sai ?

c)Ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

⇒x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

d)Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)

⇒ x = 2k ; y = 3k ; z = 5k

⇒ xyz = 2k.3k.5k = 30k3 = 810

⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
2 tháng 7 2018

a. Có \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\) => \(\dfrac{x}{4}=\dfrac{3x}{9}=\dfrac{4z}{36}\) và x-3y+4z=62

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{4}=\dfrac{3y}{9}=\dfrac{4z}{36}\)= \(\dfrac{x-3y+4z}{4-9+36}=\dfrac{62}{31}=2\)

=> x=8

3y=18=>y=6

4z=72=>z=18

Vậy x=8 ; y=6 ; z=18

2 tháng 7 2018

b, Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\\ =\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot4=12\end{matrix}\right.\\ vậy...\)

Câu c bạn làm tương tự nhé!

d, Ta có : \(\left|x+y-z\right|=95\Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\)

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(2x=3y=5z=\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}=\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\\ =\dfrac{x+y-z}{15+10-6}=\dfrac{x+y-z}{19}\\ \Rightarrow\left[{}\begin{matrix}x+y-z=95\\x+y-z=-95\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=15\cdot5=75\\y=10\cdot5=50\\z=6\cdot5=30\end{matrix}\right.\\\left\{{}\begin{matrix}x=-5\cdot15=-75\\y=-5\cdot10=-50\\z=-5\cdot6=-30\end{matrix}\right.\end{matrix}\right.\)

Vậy...

3 tháng 8 2017

\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{3}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Rightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

\(=\dfrac{2x-3y+z}{18-36+20}\)

\(=\dfrac{6}{2}=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.9=27\\y=3.12=36\\z=3.20=60\end{matrix}\right.\)

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

\(\Rightarrow x.\dfrac{2}{3}=y.\dfrac{3}{4}=z.\dfrac{4}{5}\)

\(\Rightarrow x:\dfrac{3}{2}=y:\dfrac{4}{3}=z:\dfrac{5}{4}\)

\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

\(=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}\)

\(=\dfrac{49}{\dfrac{49}{12}}=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.\dfrac{3}{2}=18\\y=12.\dfrac{4}{3}=16\\z=12.\dfrac{5}{4}=15\end{matrix}\right.\)

4 tháng 8 2017

Ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)

\(\dfrac{y}{3}=\dfrac{z}{5}=>\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)

Từ (1),(2)=>\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)=\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)

=>\(\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

26 tháng 12 2017

\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\\ \Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}\\ =\dfrac{\left(6x-12y\right)+\left(8z-6x\right)+\left(12y-8z\right)}{9+4+16}=0\\ \Rightarrow2x=4y;4z=3x;3y=2z\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3\\ \Rightarrow x=12;y=6;z=9\)

26 tháng 7 2019

a) Xem lại đề

b) Ta có: \(2x=4y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x-3y-z}{1-\frac{3}{4}-\frac{1}{5}}=\frac{1}{\frac{1}{20}}=20\)

=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=20\\\frac{y}{\frac{1}{4}}=20\\\frac{z}{\frac{1}{5}}=20\end{cases}}\) => \(\hept{\begin{cases}x=20.\frac{1}{2}=10\\y=20.\frac{1}{4}=5\\z=20.\frac{1}{5}=4\end{cases}}\)

Vậy x = 10; y = 5 và z = 4

26 tháng 7 2019

a)\(\frac{x}{5}=\frac{y}{6};\frac{y}{2}=\frac{z}{3}\)va \(x^3-2x^2y+z^3\)

27 tháng 9 2017

Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12x}{18}=\dfrac{12y}{16}=\dfrac{12z}{15}=\dfrac{12x+12y+12z}{18+16+15}=\dfrac{12.\left(x+y+z\right)}{49}\)

\(=\dfrac{12.49}{49}=12\)

\(\Rightarrow\dfrac{2x}{3}=12\Rightarrow x=18\)

\(\dfrac{3y}{4}=12\Rightarrow y=16\)

\(\dfrac{4z}{5}=12\Rightarrow z=15\)

Vậy \(x=18;y=16;z=15\)

19 tháng 11 2017

Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

\(\dfrac{x}{\dfrac{3}{2}}=12\Rightarrow x=12.\dfrac{3}{2}=18\)

\(\dfrac{y}{\dfrac{4}{3}}=12\Rightarrow y=12.\dfrac{4}{3}=16\)

\(\dfrac{y}{\dfrac{5}{4}}=12\Rightarrow y=12.\dfrac{5}{4}=15\)

Vậy x;y;z lần lượt là 18;16;15

31 tháng 1 2020

Ta có :\(\frac{3}{x}+\frac{4}{y}+\frac{5}{z}=6\)

\(\Leftrightarrow\frac{6}{2x}+\frac{12}{3y}+\frac{20}{4z}=6\)

\(\Leftrightarrow\frac{6}{2x}+\frac{12}{2x}+\frac{20}{2x}=6\)

\(\Leftrightarrow\frac{6+12+20}{2x}=6\)

\(\Leftrightarrow\frac{19}{x}=6\)

\(\Leftrightarrow x=\frac{19}{6}\)

\(\Leftrightarrow\frac{2}{3}x=\frac{2}{3}.\frac{19}{6}=\frac{19}{9}=y\)

\(\Leftrightarrow\frac{3}{4}y=\frac{3}{4}.\frac{19}{9}=\frac{19}{12}=z\)

Vậy \(\hept{\begin{cases}x=\frac{19}{6}\\y=\frac{19}{9}\\z=\frac{19}{12}\end{cases}}\)