K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 2 2020
( x+y )2 = xy( xy + 1 ) ⟺ ( x+y )2 = xy( xy + 1 ).
Lại có ( | xy |, | xy+1 | ) = 1( | xy | ,| xy+1 | ) = 1 nên xét:
Nếu xy ≥ 0 xy ≥ 0 thì {xy = a2xy + 1 = b2 {xy = a2xy + 1 = b2
Với a,ba,b nguyên dương. Từ trên ta được a2 = b2 − 1 ⟺ (b−a)(b+a )= 1a2 = b2 − 1 ⟺ (b−a)(b+a) = 1 => a = 0, b = 1
a = 0, b = 1. Từ đó x = y = 0
Nếu xy ≤ −1xy ≤ −1 (Không thể −1≤ xy ≤ 0−1 ≤ xy ≤ 0 ) được.
Tương tự, đặt {xy = −m2xy + 1 = −n2{xy = −m2xy + 1 = −n2
Trong đó m,nm,n nguyên dương. Tương tự như trên tìm được m,nm,n và tìm được x,yx,y
LK
0
PC
0
BC
0
NV
0
x+y=xy <=> x=xy-y <=> x=y(x-1)
=> \(y=\frac{x}{x-1}=\frac{x-1+1}{x-1}=1+\frac{1}{x-1}\)
Để y nguyên => 1 chia hết cho x-1
=> x-1 = (-1,1) => x=(0, 2) => y=(0, 2)
Đáp số: x=y=0 và x=y=2
Ta có :
x+y=xy
<=> x+y-xy=0
<=> x+y-xy+1=1
<=> (y-1)(x-1)=1
<=>\(\orbr{\begin{cases}y-1=x-1=1\\y-1=x-1=-1\end{cases}}\)
<=> \(\orbr{\begin{cases}y=x=2\\y=x=0\end{cases}}\)
Vậy các cặp (x;y) thỏa mãn là (2;2);(0;0).