K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2023

Ta có: 2x - 1 = 2(x + 1) - 3

Để (2x - 1)/(x + 1) nguyên thì 3 ⋮ (x + 1)

⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}

⇒ x ∈ {-4; -2; 0; 2}

28 tháng 6 2023
7 tháng 9 2021

\(a,\Leftrightarrow7⋮x-1\Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;8\right\}\\ b,\Leftrightarrow\dfrac{x-1+2}{x-1}\in Z\Leftrightarrow1+\dfrac{2}{x-1}\in Z\\ \Leftrightarrow2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{-1;0;2;3\right\}\)

7 tháng 9 2021

a) để 7/x-1 thuộc Z 

=> (x-1) thuộc ước 7(+-1;+-7)

x-1  -1     1      -7      7

x      0     2       -6     8

24 tháng 11 2021

1) Xét rằng x > 7 <=> A < 0

Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến

A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1

Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6

21 tháng 8 2023

a) \(P=\dfrac{2x+5}{x+3}\inℤ\left(x\inℤ;x\ne-3\right)\)

\(\Rightarrow2x+5⋮x+3\)

\(\Rightarrow2x+5-2\left(x+3\right)⋮x+3\)

\(\Rightarrow2x+5-2x-6⋮x+3\)

\(\Rightarrow-1⋮x+3\)

\(\Rightarrow x+3\in\left\{-1;1\right\}\)

\(\Rightarrow x\in\left\{-4;-2\right\}\)

b) \(P=\dfrac{3x+4}{x+1}\inℤ\left(x\inℤ;x\ne-1\right)\)

\(\Rightarrow3x+4⋮x+1\)

\(\Rightarrow3x+4-3\left(x+1\right)⋮x+1\)

\(\Rightarrow3x+4-3x-3⋮x+1\)

\(\Rightarrow1⋮x+1\)

\(\Rightarrow x+1\in\left\{-1;1\right\}\)

\(\Rightarrow x\in\left\{-2;0\right\}\)

c) \(P=\dfrac{4x-1}{2x+3}\inℤ\left(x\inℤ;x\ne-\dfrac{3}{2}\right)\)

\(\Rightarrow4x-1⋮2x+3\)

\(\Rightarrow4x-1-2\left(2x+3\right)⋮2x+3\)

\(\Rightarrow4x-1-4x-6⋮2x+3\)

\(\Rightarrow-7⋮2x+3\)

\(\Rightarrow2x+3\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow x\in\left\{-2;-1;-5;2\right\}\)

21 tháng 8 2023

a) P=\(\dfrac{2x+5}{x+3}=\dfrac{2\left(x+3\right)-2}{x+3}=\dfrac{2\left(x+3\right)}{x+3}-\dfrac{2}{x+3}=2-\dfrac{2}{x+3}\)

để \(P\inℤ\) thì \(\dfrac{2}{x+3}\inℤ\) hay 2 ⋮ (x-3) ⇒x+3 ϵ Ư2= (2,-2,1,-1)

ta có bảng sau:

x+3 2 -2 1 -1
x -1 -5 -2 -4

Vậy x \(\in-1,-2,-5,-4\)

 

 

 

 

 

25 tháng 2 2021

1

Áp dụng tính chất dãy tỉ số bằng nhau

`=>a/(b+c)=c/(a+b)=b/(a+c)=(a+b+c)/(2a+2b+2c)=1/2`

`=>b+c=2a`

`=>a+b+c=3a`

Hoàn toàn tương tự:

`a+b+c=3b`

`a+b+c=3c`

`=>a=b=c`

`=>A=1/2+1/2+1/2=3/2`

2

`A in Z`

`=>x+3 vdots x-2`

`=>x-2+5 vdots x-2`

`=>5 vdots x-2`

`=>x-2 in Ư(5)={1,-1,5,-5}`

`+)x-2=1=>x=3(TM)`

`+)x-2=-1=>x=1(TM)`

`+)x-2=5=>x=7(TM)`

`+)x-2=-5=>x=-3(TM)`

Vậy với `x in {1,3,-3,7}` thì `A in Z`

`A in Z`

`=>1-2x vdots x+3`

`=>-2(x+3)+1+6 vdots x+3`

`=>7 vdots x+3`

`=>x+3 in Ư(7)={1,-1,7,-7}`

`+)x+3=1=>x=-2(TM)`

`+)x+3=-1=>x=-4(TM)`

`+)x+3=-7=>x=-10(TM)`

`+)x+3=7=>x=4(TM)`

Vậy `x in {2,-4,4,10}` thì `A in Z`

a: ĐểA nguyên thì x^2+2x+x+2-3 chia hết cho x+2

=>-3 chia hết cho x+2

=>x+2 thuộc {1;-1;3;-3}

=>x thuộc {-1;-3;1;-5}

b: B nguyên khi x^2+x+3 chia hết cho x+1

=>3 chia hết cho x+1

=>x+1 thuộc {1;-1;3;-3}

=>x thuộc {0;-2;2;-4}

27 tháng 10 2023

a) 2ˣ + 2ˣ⁺³ = 72

2ˣ.(1 + 2³) = 72

2ˣ.9 = 72

2ˣ = 72 : 9

2ˣ = 8

2ˣ = 2³

x = 3

b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)

Ta có:

x - 2 = x + 1 - 3

Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)

⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}

⇒ x ∈ {-4; -2; 0; 2}

Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên

c) P = |2x + 7| + 2/5

Ta có:

|2x + 7| ≥ 0 với mọi x ∈ R

|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R

Vậy GTNN của P là 2/5 khi x = -7/2

8 tháng 12 2016

Để \(\frac{2x+3}{x-1}\) là số nguyên thì 2x + 3 chia hết cho x - 1

=> 2x - 2 + 5 chia hết cho x - 1

=> 2(x - 1) + 5 chia hết cho x - 1

Mà 2(x - 1) chia hết cho x - 1 nên 5 chia hết cho x - 1

=> x - 1 thuộc Ư của 5

=> x - 1 thuộc -5; -1 ; 1 ; 5

=> x thuộc -4 ; 0 ; 2 ; 6

Vậy x thuộc -4;0;2;6 thì \(\frac{2x+3}{x-1}\) có giá trị nguyên

 

8 tháng 12 2016

Giải:

Để \(\frac{2x+3}{x-1}\in Z\Rightarrow2x+3⋮x-1\)

Ta có: \(2x+3⋮x-1\)

\(\Rightarrow\left(2x-2\right)+5⋮x-1\)

\(\Rightarrow2\left(x-1\right)+5⋮x-1\)

\(\Rightarrow5⋮x-1\)

\(\Rightarrow x-1\in\left\{1;-1;5;-5\right\}\)

+) \(x-1=1\Rightarrow x=2\)

+) \(x-1=-1\Rightarrow x=0\)

+) \(x-1=5\Rightarrow x=6\)

+) \(x-1=-5\Rightarrow x=-4\)

Vậy \(x\in\left\{2;0;6;-4\right\}\)