Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x+2^{x+3}=144\)
\(\Leftrightarrow2^x+2^x.2^3=144\)
\(\Leftrightarrow2^x+2^x.8=144\)
\(\Leftrightarrow2^x.\left(1+8\right)=144\)
\(\Leftrightarrow2^x.9=144\)
\(\Leftrightarrow2^x=16\)\(\Leftrightarrow2^x=2^4\)
\(\Leftrightarrow x=4\)
Vậy \(x=4\)
Ta có: \(144=2^4.3^2.5^0\)
Suy ra: \(2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
Suy ra: \(2^{x-2}=2^4;3^{y-3}=3^2;5^{z-1}=5^0\)
Suy ra: \(x-2=4;y-3=2\) và \(z-1=0\)
Hay \(x=6;y=5\) và \(z=1\)
Giải
a, Ta có 2^x + 2^x+5 = 144
=> 2^x.1 + 2^x.2^5 = 144
=> 2^x.(1+2^5)=144
=> 2^x.33=144
=> 2^x=144/33=48/11
Vì 2^x luôn dương mà 48/11 là một phân số
=> Vô lý
Vậy không tìm được giá trị x thỏa mãn
b, Giải
Ta có |x+1|+|x+3|+|x+5|=7x
=> x+1+x+3+x+5=7x
=> 3x+9=7x
=> 9=7x-3x
=>9=4x
=> 9/4=x
Vậy x=9/4
a) \(2^x+2^{x+5}=144\)
\(\Rightarrow2^x+2^x\cdot2^5=144\)
\(\Rightarrow2^x+2^x\cdot32=144\)
\(\Rightarrow2^x\left(1+32\right)=144\)
\(\Rightarrow2^x\cdot33=144\)
\(\Rightarrow2^x=144:33\)
\(\Rightarrow2^x=\frac{48}{11}\)
\(\Rightarrow x\in\varnothing\)
Vậy không tìm được x thỏa mãn đề bài
b) \(|x+1|+|x+3|+|x+5|=7x\)
Ta có: \(\hept{\begin{cases}|x+1|\ge0\forall x\\|x+3|\ge0\forall x\\|x+5|\ge0\forall x\end{cases}\Rightarrow|x+1|+|x+3|+|x+5|\ge0\forall x\Rightarrow7x\ge0\forall x}\)
\(\Rightarrow|x+1|+|x+3|+|x+5|=x+1+x+3+x+5=7x\)
\(\Rightarrow\left(x+x+x\right)+\left(1+3+5\right)=7x\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=\frac{4}{9}\)
Vậy x=\(\frac{4}{9}\)
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x^{\left(1\right)}\)
Ta có \(\left|x+1\right|\ge0;\left|x+3\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow7x\ge0\Rightarrow x\ge0\)
Từ (1)\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x\)
\(3x+9=7x\)
\(3x-7x=-9\)
\(-4x=-9\)
\(x=\frac{9}{4}\)
a) \(\left(x-\frac{3}{5}\right)^2=4\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-\frac{3}{5}=2\\x-\frac{3}{5}=-2\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{13}{5}\\x=-\frac{7}{5}\end{cases}}\)
Vậy...
b) \(2^x+2^{x+3}=144\)
\(\Leftrightarrow\)\(2^x.\left(1+2^3\right)=144\)
\(\Leftrightarrow\)\(2^x=16=2^4\)
\(\Leftrightarrow\)\(x=4\)
Vậy....
a) \(\left(x-\frac{3}{5}\right)^2=4\)
\(\Leftrightarrow\left(x-\frac{3}{5}\right)^2=\left(\pm2\right)^2\)
Xét : TH1 :x - 3/5 = 2
<=> x = 2 + 3/5
<=> x = 13/5
TH2 : x - 3/5 = -2
<=> x = - 2 + 3/5
<=> x = -7/5
Vậy ...
b ) 2x + 2x+3 = 144
<=> 2x + 2x . 23 = 144
<=> 2x ( 1 + 23 ) = 144
<=> 2x . 9 = 144
<=> 2x = 16
<=> x = 4
Vậy ..
Cái câu đầu bn nhập sai rùi
Câu 2
\(x^5=2x^7\)
\(\frac{x^5}{x^7}=2\)
\(\frac{1}{x^2}=2\)
\(\left(\frac{1}{x}\right)^2=2\)
\(\frac{1}{x}=\sqrt{2}\)
Câu cuối
Ta thấy 2, 3, 5 đều là số nguyên tố nên
Ta phân tích 144 thành số nguyên tố \(2^4\cdot3^2\)
Thay vào Ta tính x=6; y=5
Vì số nào lũy thừa 0 lên cũng bằng 1 nên
Ta có thể viết \(144=2^4\cdot3^2\cdot5^0\)
Thay vào ta tính z=1
o phan dau tien ta co
x-5nhan căn bậc hai của x bằng 0
=>5 nhan can bac hai cua x bang x
=>ta co the thay x bang 5 nhan can bac hai cua x
thay vao ta duoc 5 nhan can bac hai cua x nhan voi5 nhan can bac hai cua x bang x^2
25*x=x^2=x*x
suy ra x=25
vay x=25
o phan tiep theo
x5=2x7
=>x.x.x.x.x.1=2.x.x.x.x.x.x.x
=>1=2.x.x
=>1/2=x*x
=>x= can bac hai cua 1/2
o phan cuoi cung
2x-2.3y-3.5z-1=144
=>2^x/4.3^y/9.5^z/5=144
=>2^x.3^y.5^z=144/4/9/5=0.8
ma o day ta thay 0.8 khong chua h chia het cho y x va z
vay ko co cap x y z nao thoa man
Sửa lại
<=>2x+2x.23=144
<=>2x(1+23)=144
<=>2x.9=144
<=>2x=144:9=16=24
=>x=4
a)Vì \(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\Leftrightarrow\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}\Rightarrow\hept{\begin{cases}x=38\\y=42\end{cases}}}\)
b)Vì x + y + z =18
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=2\\\frac{y}{3}=2\\\frac{z}{4}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=6\\z=8\end{cases}}\)
c)\(2^x+2^{x+3}=144\)
\(\Leftrightarrow2^x+2^x.2^3=144\)
\(\Leftrightarrow2^x.\left(2^3+1\right)=144\)
\(\Leftrightarrow2^x.9=144\)
\(\Leftrightarrow2^x=16=2^4\)
Vậy x=4
a) \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}\)
Áp dụng tính chất dãy tỉ số bằng nhau. ta có:
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Từ \(\frac{x}{19}=2\Rightarrow x=2.19=38\)
\(\frac{y}{21}=2\Rightarrow y=2.21=42\)
Vậy x = 38 ; y=42
c) \(2^x+2^{x+3}=144\)
\(\Rightarrow2^x+2^x\times2^3=144\)
\(\Rightarrow2^x.\left(1+2^3\right)=144\)
\(\Rightarrow2^x.9=144\)
\(\Rightarrow2^x=144\div9=16=2^4\)
\(\Rightarrow x=4\)
Vậy x = 4
fuck you!~!~
2^x +2^x+3 =144
» 2^x .1+2^x. 2^3 =144
»2^x. (1+2^3) =144
»2^x. 9=144
» 2^x =16
» x=4