K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

ADTCDTSBN

có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{15}=\frac{x+y+z}{2+5+15}=\frac{230}{22}=\frac{115}{11}.\)

=> x/2 = 115/11 => x  = 230/11

...

bn tự lm típ nha!!!

7 tháng 10 2018

Cách 2:

ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\\z=15k\end{cases}}\)

mà x + y + z = 230

=> 2k + 5k + 15k = 230

k.(2+5+15) = 230

k.22 = 230

k = 115/11

=> x = 2k = 2. 115/11 = 230/11

...

20 tháng 12 2016

\(\frac{x}{3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{x}{14}\left(1\right);\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{35}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{6}=\frac{y}{14}=\frac{z}{35}\)=>\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{36}=\frac{y^2}{196}=\frac{z^2}{1225}=\frac{2x^2}{72}=\frac{3y^2}{588}=\frac{2x^2+3y^2-z^2}{72+588-1225}=\frac{-2260}{-565}=4\)

hay \(\frac{x^2}{36}=4\Leftrightarrow x^2=144\Leftrightarrow x=\pm12\)

      \(\frac{y^2}{196}=4\Leftrightarrow y^2=784\Leftrightarrow y=\pm28\)

      \(\frac{z^2}{1225}=4\Leftrightarrow z^2=\Leftrightarrow z=\pm70\)

+)Với x=-12 thì y=-28 và z=-70

+)Với x=12 thì y=28 và z=70

Vậy ...................

20 tháng 12 2016

lúc nãy viết thiếu, chỗ z2=4900 nhé :)

6 tháng 9 2018

a)6,3+3,7+2,4+(-0,3)=12,1                                                                                                                                                                                   b)-4,9+5,5+4,9+(-5,5)=0

6 tháng 9 2018

\(a.6,3+\left(3,7\right)+2,4+\left(-0,3\right)=12,1\)

\(b.\left(-4,9\right)+5,5+4,9+\left(-5,5\right)=0\)

tk nha mn

NM
8 tháng 11 2021

1. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)

2. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)

Bài 1: 

Ta có:

\(y-x=25\Rightarrow y=25+x\)

Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)

\(7x=100+4x\)

\(\Rightarrow7x-4x=100\)

\(3x=100\)

\(x=\frac{100}{3}\)

2 tháng 11 2023

bài 1 :

Ta có: 7x=4y ⇔ x/4=y/7

áp dụng tính chất dãy tỉ số bằng nhau ta có 

x/4=y/7=(y-x)/(7-4)=100/3

⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3

bài 2 

ta có x/5 = y/6 ⇔ x/20=y/24

         y/8 = z/7 ⇔ y/24=z/21

⇒x/20=y/24=z/21

ADTCDTSBN(bài 1 có)

x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16

⇒x= 20 x 23/16 = 115/4

   y= 24x 23/16=138/2

   z=21x23/16=483/16

 

8 tháng 10 2021

x:y:z=4:5:6

--> x/4=y/5=z/6

Đặt x=4k; y=5k; z=6k

x^2-2y^2+z^2=18

(4k)^2-2.(5k)^2+(6k)^2=18

2k^2=18

k^2=9

k=3 hoặc k=-3

Khi k=3

--> x=4.3=12

y=5.3=15

z=6.3=18

Khi k=-3

--> x=4.(-3)=-12

y=5.(-3)=-15

z=6.(-3)=-18

13 tháng 3 2018

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-16}{-80}=\frac{1}{5}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{5}.64=12,8\\y^2=\frac{1}{5}.144=28,8\\z^2=\frac{1}{5}.225=45\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\pm\sqrt{12,8}\\y=\pm\sqrt{28,8}\\z=\pm\sqrt{45}\end{cases}}\)

Với \(x=\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=\sqrt{28,8}\\z=\sqrt{45}\end{cases}}\)

Với \(x=-\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=-\sqrt{28,8}\\z=-\sqrt{45}\end{cases}}\)

21 tháng 1

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

29 tháng 12 2016

Ta có :

- x/3 = y/7 suy ra : x/6 = y/14

- y/2 = z/5 suy ra : y/14 = z/35

Và ................................

Kết quả là : x = 24 ; z = 140

ai tk mk mk tk lại

20 tháng 12 2016

Ta có:

- x/3 = y/7 suy ra: x/6 = y/14

- y/2 = z/5 suy ra: y/14 = z/35

Và.......................................................

Nói chung kết quả: x=24

                             y=56

                             z=140

2 tháng 10 2016

\(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và \(x+y+z=40\)

Áp dụng tc dãy tỉ:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{40}{31}\)

\(\Rightarrow\begin{cases}\frac{x}{15}=\frac{40}{31}\\\frac{y}{10}=\frac{40}{31}\\\frac{z}{6}=\frac{40}{31}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{600}{31}\\y=\frac{400}{31}\\z=\frac{240}{31}\end{cases}\)

 

2 tháng 10 2016

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)

Áp dụng tính chất dãy tỉ số = nhau

*\(\frac{x}{2}=4=>x=8\)

*\(\frac{y}{3}=4=>y=12\)

*\(\frac{z}{5}=4=>z=20\)

vậy:\(x=8;y=12;z=20\)