Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)
-->(x+4)(x+4)=(x+3)(x+9)
\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27
\(x^2-x^2\)+4x+4x-9x-3x= - 16+27
- 4x=11
x=\(\frac{-4}{11}\)
b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)
-->(x-5)(x+6)=(x+3)(x-4)
\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12
\(x^2-x^2\)+6x-5x+4x-3x=30-12
2x=18
x=9
c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)
--> (3x-1)(2x+1)=3x.(2x-1)
\(6x^2\)+3x-2x-1=\(6x^2\)-3x
\(6x^2-6x^2\)+3x-2x+3x=1
4x=1
x=\(\frac{1}{4}\)
ta có: 2xx=3y=>x/3=y/2=>x/21=y/14 ; x/7=z/5=>x/21=z/15 =>x/21=y/14=z/15=>3x/63=7y/98=5z/75 ADTCDTSBN ta có 3x/63=7y/98=5z /75=3x-7y+5z=40/63-98+75=40=1 3x=1.63=63 =>x=21 ;7y=1.98=98=>y=14 ; 5z=1.75=>z=15
c) \(\frac{2x+9}{x+3}-\frac{5x+17}{x+3}-\frac{3x}{x+3}=\frac{2x+9-5x-17-3x}{x+3}\)
\(=\frac{-6x-8}{x+3}=\frac{-2\left(3x+4\right)}{x+3}=-2.\frac{3x+9-5}{x+3}\)\(=-2.\frac{3x+9}{x+3}-\frac{5}{x+5}\)\(=-2.\frac{3\left(x+3\right)}{x+3}-\frac{5}{x+3}=-2.3-\frac{5}{x+3}=-6-\frac{5}{x+3}\)
Nói tương tự như câu a;
=> x+3 thuộc { -5; -1; 1; 5}
=> x thuộc { -8; -4; -2; 2}
a) \(\frac{x^2-3x+7}{x-3}=\)\(\frac{x\left(x-3\right)+7}{x-3}=\frac{x\left(x-3\right)}{x-3}+\frac{7}{x-3}=x+\frac{7}{x-3}\)
Do \(\frac{x^2-3x+7}{x-3}\in Z\)và x thuộc Z => \(\frac{7}{x-3}\in Z\)=> 7 chia hết cho x- 3 => x-3 thuộc Ư(7)
=> x-3 thuộc { -7; -1; 1; 7}
=> x thuộc { -4; 2; 4; 11}
b) \(\frac{x^2-1}{x-1}=\frac{\left(x+1\right)\left(x-1\right)}{x-1}=x+1\)
Vậy giá tị x thuộc số nguyên thì \(\frac{x^2-1}{x-1}\in Z\)( x khác -1)
Bài 1:
a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)
Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)
b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)
Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Vậy \(a\in\left\{-9;-5;-3;1\right\}\)
Bài 2:
a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-2;4;6;12\right\}\)
b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)
Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-4;2;4;10\right\}\)
c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)
Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)
Bài 3:
Gọi \(d\inƯC\left(2m+9;14m+62\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)
Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản
b) từ đề bài suy ra được x=2y/3. Z=5y/3 thay vào x.y.z=810 ta được. 10/9 nhân y^3 =810 => y^3=729=>y=9=>x=6. Z=15.
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42