\(\frac{x+4}{x+3}\) = \(\frac{x+9}{x+4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

B1:

a) \(\frac{x+4}{x+3}=\frac{x+9}{x+4}\)

-->(x+4)(x+4)=(x+3)(x+9)

\(x^2\)+4x+4x+16=\(x^2\)+9x+3x+27

\(x^2-x^2\)+4x+4x-9x-3x= - 16+27

 - 4x=11

x=\(\frac{-4}{11}\)

b) \(\frac{x-5}{x+3}=\frac{x-4}{x+6}\)

-->(x-5)(x+6)=(x+3)(x-4)

\(x^2\)+6x-5x-30=\(x^2\)-4x+3x-12

\(x^2-x^2\)+6x-5x+4x-3x=30-12

2x=18

x=9

c)\(\frac{3x-1}{3x}=\frac{2x-1}{2x+1}\)

--> (3x-1)(2x+1)=3x.(2x-1)

\(6x^2\)+3x-2x-1=\(6x^2\)-3x

\(6x^2-6x^2\)+3x-2x+3x=1

4x=1

x=\(\frac{1}{4}\)

 

26 tháng 7 2016

Hỏi đáp Toán

13 tháng 6 2017

Đề câu trả lời trên là:

Tìm x, y, z thuộc Z, biết

a) |x| + |-x|= 3-x

b) x6 −1y =12 

c) 2x = 3y; 5x = 7z và  3x - 7y +5z = 30

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

10 tháng 10 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-7}=\frac{y}{4}=\frac{2x}{2.\left(-7\right)}=\frac{3y}{3.4}=\frac{2x-3y}{\left(-14\right)-12}=\frac{-78}{-26}=3\)

\(\frac{x}{-7}=3\Rightarrow x=3.\left(-7\right)=-21\)

\(\frac{y}{4}=3\Rightarrow y=3.4=12\)

Vậy x=-21 và y=12

b) mình ngĩ đề là -2x+7y-3z mới đúng

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{-3}=\frac{y}{4}=\frac{z}{5}=\frac{-2x}{-2.\left(-3\right)}=\frac{7y}{7.4}=\frac{3z}{3.5}=\frac{-2x+7y-3z}{6+28-15}=\frac{171}{19}=9\)

\(\frac{x}{-3}=9\Rightarrow x=9.\left(-3\right)=-27\)

\(\frac{y}{4}=9\Rightarrow y=9.4=36\)

\(\frac{z}{5}=9\Rightarrow y=9.5=45\)

Vậy x=-27 ; y=36 và z=45

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{5}=\frac{-3x}{-3.4}=\frac{2y}{2.\left(-5\right)}=\frac{-3x+2y}{\left(-12\right)+\left(-10\right)}=\frac{55}{-22}=\frac{-5}{2}\)

\(\frac{x}{4}=\frac{-5}{2}\Rightarrow x=\frac{-5}{2}.4=-10\)

\(\frac{y}{-5}=\frac{-5}{2}\Rightarrow y=\frac{-5}{2}.\left(-5\right)=\frac{25}{2}\)

Vậy x=-10 và y=25/2

12 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tĩ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)

Suy ra

x = (-2) . 9 = -18

y = (-2) . 12 = -24

z = (-2) . 15 = -30

 

12 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Suy ra 

x = 2 . 10 = 20

y = 2 . 6 = 12

z = 2 . 21 = 42

 

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này