Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại
bạn làm theo cách một chúng ta dc:
\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng đúng v~
Khi 2x+3y-1=0 thì nó thành cách 2 đấy
Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.
v~ thiệt
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=\frac{1}{4}\\\frac{y^2}{16}=\frac{1}{4}\\\frac{z^2}{36}=\frac{1}{4}\end{cases}\Rightarrow\hept{\begin{cases}x^2=1\\y^2=4\\z^2=9\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm1\\y=\pm2\\z=\pm3\end{cases}}}\)
Nhận xét : Nếu cộng các đẳng thức, ta nhận được:
\(\left(x^4+2x^3-x+\frac{1}{4}\right)+\left(y^4+2y^3-y+\frac{1}{4}\right)=0.\)
Với việc chọn đa thức \(P\left(x\right)=\left(x-a\right)^2\left(x-b\right)^2,\)sau khi khai triển và đồng nhất hệ số với đa thức \(Q\left(x\right)=x^4+2x^3-x+\frac{1}{4}\)ta được: \(a=\frac{-1+\sqrt{3}}{2}\)và \(b=\frac{-1-\sqrt{3}}{2}.\)
Lời giải: Xét đa thức: \(P\left(x\right)=\left(x-\frac{-1+\sqrt{3}}{2}\right)^2\left(x-\frac{-1-\sqrt{3}}{2}\right)^2,\)
Thấy rằng với mọi \(x\in R\)thì \(P\left(x\right)\)luôn không âm. Suy ra
\(0\le P\left(x\right)+P\left(y\right)=\left(x+2x^3-x+\frac{1}{4}\right)+\left(y^4+2y^3-y+\frac{1}{4}\right)\)
\(=\left(x^4+2y^3-x\right)+\left(y^4+2x^3-y\right)+\frac{1}{4}+\frac{1}{4}\)
\(=-\frac{1}{4}+3\sqrt{3}+\left(-\frac{1}{4}-3\sqrt{3}\right)+\frac{1}{4}+\frac{1}{4}\)
\(=0\)
Vì \(P\left(x\right);P\left(y\right)\)đều không âm nên dấu '=' xảy ra khi và chỉ khi \(P\left(x\right)=P\left(y\right)=0\).
Do đó: \(x,y\in\left\{\frac{-1+\sqrt{3}}{2};\frac{-1-\sqrt{3}}{2}\right\}.\)Thay vào phương trình và dùng phép thử trực tiếp, ta thu nhận được:
\(x=\frac{-1-\sqrt{3}}{2},y=\frac{-1+\sqrt{3}}{2}.\)
\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{20}=\frac{y}{10}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{z}{15}\)
áp dụng tc của dãy tỉ số = nhau
Đề câu trả lời trên là:
Tìm x, y, z thuộc Z, biết
a) |x| + |-x|= 3-x
b) x6 −1y =12
c) 2x = 3y; 5x = 7z và 3x - 7y +5z = 30