Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $\frac{-12}{x}$ là số nguyên thì $x\in Ư(-12)$
$\Rightarrow x\in \left\{\pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 12\right\}(1)$
Để $\frac{15}{x-2}$ nguyên thì $x-2\in Ư(15)$
$\Rightarrow x-2\in \left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$
$\Rightarrow x\in \left\{1; 3; 5; -1; 7; -3; 17; -13\right\}(2)$
Để $\frac{8}{x+1}$ nguyên thì $x+1\in Ư(8)$
$\Rightarrow x+1\in \left\{\pm 1; \pm 2; \pm 4; \pm 8\right\}$
$\Rightarrow x\in \left\{0; -2; 1; -3; 3; -5; 7; -9\right\}(3)$
Vậy để thỏa mãn đồng thời cả 3 ĐK trên thì $x$ phải cùng thuộc 3 tập $(1); (2); (3)$
$\Rightarrow x\in \left\{1; \pm 3\right\}$
`( 3x + 2 )/( x + 2 )` nguyên `.`
`=> 3x + 2` \(\vdots\) `x+2`
`=> 3x + 6 - 4` \(\vdots\) `x+2`
`=> 3( x + 2 )-4` \(\vdots\) `x+2`
Do `3( x + 2 )` \(\vdots\) `x+2` mà để `3( x + 2 )-4` \(\vdots\) `x+2`
`=> -4` \(\vdots \) `x+2` hay `x+2 in Ư_(4) = { +-1 ; +-2 ; +-4 }`
Do `x in ZZ^-`
`=> x + 2 in ZZ` `; x + 2 < 2`
`=> x + 2 in { +-1 ; -2 ; -4 }`
`=> x in { -1 ; -3 ; -4 ; -6 }`
Vậy `x in { -1;-3;-4;-6}`
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
\(\dfrac{2023}{2022}=\dfrac{2022}{2022}+\dfrac{1}{2022}=1+\dfrac{1}{2022}\)
\(\dfrac{2021}{2020}=\dfrac{2020}{2020}+\dfrac{1}{2020}=1+\dfrac{1}{2020}\)
\(\dfrac{1}{2022}< \dfrac{1}{2020}\)
\(\Rightarrow\dfrac{2023}{2022}< \dfrac{2021}{2020}\)
\(\dfrac{2023}{2022}=1+\dfrac{1}{2022}\)
\(\dfrac{2021}{2020}=1+\dfrac{1}{2020}\)
mà \(\dfrac{1}{2022}< \dfrac{1}{2020}\)
nên \(\dfrac{2023}{2022}< \dfrac{2021}{2020}\)
a) Để phân số \(\dfrac{26}{x+3}\) nguyên thì \(26⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
hay \(x\in\left\{-2-4;-1;-5;10;-16;23;-29\right\}\)
b) Để phân số \(\dfrac{x+6}{x+1}\) nguyên thì \(x+6⋮x+1\)
\(\Leftrightarrow5⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
c) Để phân số \(\dfrac{x-2}{x+3}\) nguyên thì \(x-2⋮x+3\)
\(\Leftrightarrow-5⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
d) Để phân số \(\dfrac{2x+1}{x-3}\) nguyên thì \(2x+1⋮x-3\)
\(\Leftrightarrow7⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{4;2;10;-4\right\}\)
\(8:x^2\)+3 >0
8+\(3^2\)>0
\(3^2\)>8
\(x^2\)>8/3
X>căn 8/3
Đúng ko bạn????