K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

( x - 7 )( x2 - 9x + 20 )( x - 2 ) = 72

⇔ [ ( x - 7 )( x - 2 ) ]( x2 - 9x + 20 ) - 72 = 0

⇔ ( x2 - 9x + 14 )( x2 - 9x + 20 ) - 72 = 0

Đặt t = x2 - 9x + 17

pt ⇔ ( t - 3 )( t + 3 ) - 72 = 0

    ⇔ t2 - 9 - 72 = 0

    ⇔ t2 - 81 = 0

    ⇔ ( t - 9 )( t + 9 ) = 0

    ⇔ ( x2 - 9x + 17 - 9 )( x2 - 9x + 17 + 9 ) = 0

    ⇔ ( x2 - 9x + 8 )( x2 - 9x + 26 ) = 0

    ⇔ ( x2 - 8x - x + 8 )( x2 - 9x + 26 ) = 0

    ⇔ [ x( x - 8 ) - ( x - 8 ) ]( x2 - 9x + 26 ) = 0

    ⇔ ( x - 8 )( x - 1 )( x2 - 9x + 26 ) = 0

Vì x2 - 9x + 26 = ( x2 - 9x + 81/4 ) + 23/4 = ( x - 9/2 )2 + 23/4 ≥ 23/4 ∀ x

=> x - 8 = 0 hoặc x - 1 = 0

=> x = 8 hoặc x = 1

26 tháng 10 2020

Ta có: \(\left(x-7\right)\left(x^2-9x+20\right)\left(x-2\right)=72\)

\(\Leftrightarrow\left(x^2-9x+20\right)\left(x^2-9x+14\right)=72\)

Đặt \(x^2-9x+17=a\) khi đó:

\(PT\Leftrightarrow\left(a+3\right)\left(a-3\right)=72\)

\(\Leftrightarrow a^2-9-72=0\)

\(\Leftrightarrow a^2=81\Rightarrow\orbr{\begin{cases}a=9\\a=-9\end{cases}}\)

Nếu a = 9 khi đó \(x^2-9x+17=9\)

\(\Leftrightarrow x^2-9x+8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=8\end{cases}}\)

Nếu a = -9 khi đó \(x^2-9x+17=-9\)

\(\Leftrightarrow x^2-9x+26=0\)

\(\Leftrightarrow\left(x^2-9x+\frac{81}{4}\right)+\frac{23}{4}=0\)

\(\Leftrightarrow\left(x-\frac{9}{2}\right)^2=-\frac{23}{4}\left(ktm\right)\)

Vậy \(S=\left\{1;8\right\}\)

26 tháng 10 2020

( x - 7 )( x2 - 9x + 20 )( x - 2 ) = 72

⇔ [ ( x - 7 )( x - 2 ) ]( x2 - 9x + 20 ) - 72 = 0

⇔ ( x2 - 9x + 14 )( x2 - 9x + 20 ) - 72 = 0

Đặt t = x2 - 9x + 17

⇔ ( t - 3 )( t + 3 ) - 72

⇔ t2 - 9 - 72 = 0

⇔ t2 - 81 = 0

⇔ ( t - 9 )( t + 9 ) = 0

⇔ ( x2 - 9x + 17 - 9 )( x2 - 9x + 17 + 9 ) = 0

⇔ ( x2 - 9x + 8 )( x2 - 9x + 26 ) = 0

⇔ ( x2 - 8x - x + 8 )( x2 - 9x + 26 ) = 0

⇔ [ x( x - 8 ) - ( x - 8 ) ]( x2 - 9x + 26 ) = 0

⇔ ( x - 8 )( x - 1 )( x2 - 9x + 26 ) = 0

⇔ x - 8 = 0 hoặc x - 1 = 0 hoặc x2 - 9x + 26 = 0

⇔ x = 8 hoặc x = 1 [ x2 - 9x + 26 = ( x2 - 9x + 81/4 ) + 23/4 = ( x - 9/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x ]

a) x2 + x - 12 = x2 - 3x + 4x - 12 = x(x - 3) + 4(x - 3) = (x - 3)(x + 4)

b) x2 - x - 12 = x2 + 3x - 4x - 12 = x(x + 3) - 4(x + 3) = (x + 3)(x - 4)

c) x2 - 9x + 20 = x2 - 4x - 5x + 20 = x(x - 4) - 5(x - 4) = (x - 4)(x - 5)

d) x2 + 9x + 20 = x2 + 4x + 5x + 20 = x(x + 4) + 5(x + 4) = (x + 4)(x + 5)

23 tháng 7 2023

a,x^2+x-12=x^2-3x+4x-12

                 =x(x-3)+4(x-3)

                 =(x-3)*(x+4)

b) x2 - x - 12 = x2 + 3x - 4x - 12 = x(x + 3) - 4(x + 3) = (x + 3)(x - 4)

 

 

16 tháng 4 2017

1) 6x2+13x+7=0

6x2+6x+7x+7=0

6x(x+1)+7(x+1)=0

(6x+7)(x+1)=0

  1. x=-7/6 
  2. x=-1

2)2x2-9x+7=0

2X2-2x-7x+7=0

2x(x-1)+7(x-1)=0

(2x+7)(x-1)=0

x= -7/2

  1. x= 1

a) \(\Leftrightarrow x^2-x-x^2+2x=5\)
    \(\Leftrightarrow x=5\)
b) \(\Leftrightarrow4x\left(x^2-9\right)=0\)
    \(\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0 \)
    \(\Leftrightarrow\)\(\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\)
    \(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy x = 0 , x = 3 hoặc x = -3

7 tháng 11 2021

\(a,\Leftrightarrow x^2-x-x^2+2x=5\\ \Leftrightarrow x=5\\ b,\Leftrightarrow4x\left(x^2-9\right)=0\\ \Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ c,\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(2x-x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-3^2-72=0\\ \Leftrightarrow\left(x^2-9x+17\right)^2-81=0\\ \Leftrightarrow\left(x^2-9x+17-9\right)\left(x^2-9x+17+9\right)=0\\ \Leftrightarrow\left(x-8\right)\left(x-1\right)\left(x^2-9x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=1\\\left(x-\dfrac{9}{2}\right)^2+\dfrac{23}{4}=0\left(vô.n_0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

28 tháng 10 2020

x3 - 2x2 - 8x = 0

⇔ x( x2 - 2x - 8 ) = 0

⇔ x( x2 - 4x + 2x - 8 ) = 0

⇔ x[ x( x - 4 ) + 2( x - 4 ) ] = 0

⇔ x( x - 4 )( x + 2 ) = 0

⇔ x = 0 hoặc x - 4 = 0 hoặc x + 2 = 0

⇔ x = 0 hoặc x = 4 hoặc x = -2

x( x - 1 ) - x2 + 2x = 5

⇔ x2 - x - x2 + 2x = 5

⇔ x = 5

4x3 - 36x = 0

⇔ 4x( x2 - 9 ) = 0

⇔ 4x( x - 3 )( x + 3 ) = 0

⇔ 4x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0

⇔ x = 0 hoặc x = 3 hoặc x = -3

2x2 - 2x = ( x - 1 )2

⇔ 2x( x - 1 ) - ( x - 1 )2 = 0

⇔ ( x - 1 )( 2x - x + 1 ) = 0

⇔ ( x - 1 )( x + 1 ) = 0

⇔ x - 1 = 0 hoặc x + 1 = 0

⇔ x = 1 hoặc x = -1

( x - 7 )( x2 - 9x + 20 )( x - 2 ) = 72

⇔ [ ( x - 7 )( x - 2 ) ]( x2 - 9x + 20 ) - 72 = 0

⇔ ( x2 - 9x + 14 )( x2 - 9x + 20 ) - 72 = 0

Đặt t = x2 - 9x + 17

⇔ ( t - 3 )( t + 3 ) - 72 = 0

⇔ t2 - 9 - 72 = 0

⇔ t2 - 81 = 0

⇔ ( t - 9 )( t + 9 ) = 0

⇔ ( x2 - 9x + 17 - 9 )( x2 - 9x + 17 + 9 ) = 0

⇔ ( x2 - 9x + 8 )( x2 - 9x + 26 ) = 0

⇔ ( x2 - 8x - x + 8 )( x2 - 9x + 26 ) = 0

⇔ [ x( x - 8 ) - ( x - 8 ) ]( x2 - 9x + 26 ) = 0

⇔ ( x - 8 )( x - 1 )( x2 - 9x + 26 ) = 0

⇔ x - 8 = 0 hoặc x - 1 = 0 hoặc x2 - 9x + 26 = 0

⇔ x = 8 hoặc x = 1 [ x2 - 9x + 26 = ( x2 - 9x + 81/4 ) + 23/4 = ( x - 9/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x ]

28 tháng 10 2020

\(x^3-2x^2-8x=x\left(x^2-2x-8\right)=x\left(x^2-4x+2x-8\right)=x\left[x\left(x-4\right)+2\left(x-4\right)\right]\)

\(=x\left(x+2\right)\left(x-4\right)\)

\(x\left(x-1\right)-x^2+2x=x^2-x-x^2+2x=x=5\)

\(4x^3-36x=4x\left(x^2-9\right)=4x\left(x-3\right)\left(x+3\right)\Leftrightarrow x=0\text{ hoặc }x=3\text{ hoặc }x=-3\)

\(2x^2-2x=x^2-2x+1\Leftrightarrow x^2=1\Leftrightarrow x=-1\text{ hoặc }1\)

\(\left(x-7\right)\left(x-4\right)\left(x-5\right)\left(x-2\right)=72\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)=72\)

đến đây đặt x^2-9x+14=a r giải như thường

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

31 tháng 10 2015

a/ => x(x2 - 9) = 0 

=> x(x - 3)(x + 3) = 0 

=> x = 0 

hoặc x - 3 = 0 => x = 3

hoặc x + 3 = 0 => x = -3

Vậy x = 0 ; x = 3 ;x = -3

b/ => x2 - 6x + x - 6 = 0

=> x(x - 6) + (x - 6) = 0 

=> (x + 1)(x - 6) = 0 

=> x + 1 = 0 => x = -1

hoặc x - 6 = 0 => x = 6

Vậy x = -1 ; x = 6

31 tháng 10 2015

a)

x(x^2-9)=0

x(x^2-3^2)=0

x(x-3)(x+3)

b) x^2-6x+x-6=0

x(x-6)+(x-6)=0

(x-6)(x+1)=0