Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{3}\left(\frac{3}{5}x+\frac{1}{2}\right)=\frac{4}{5}\left(\frac{5}{6}x-\frac{4}{3}\right)+\frac{1}{2}x-\frac{4}{5}\)
\(\frac{2}{5}x+\frac{1}{3}=\frac{2}{3}x-\frac{16}{15}+\frac{1}{2}x-\frac{4}{5}\)
\(\frac{2}{5}x-\frac{2}{3}x-\frac{1}{2}x=-\frac{16}{15}-\frac{4}{5}-\frac{1}{3}\)
\(\left(\frac{2}{5}-\frac{2}{3}-\frac{1}{2}\right)x=-\frac{16}{15}-\frac{12}{15}-\frac{5}{15}\)
\(\left(\frac{12}{30}-\frac{20}{30}-\frac{15}{30}\right)x=-\frac{33}{15}\)
\(\frac{-23}{30}x=-\frac{33}{15}\)
\(x=\frac{-33}{15}:-\frac{23}{30}=\frac{-33}{15}\cdot-\frac{30}{23}=-\frac{66}{23}\)
mk k chắc nữa, tính nhẩm
\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)
\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)
\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)
\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)
Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)
\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy \(x=100\)
d) \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}-\frac{x+10}{2000}-\frac{x+11}{1999}-\frac{x+12}{1998}=0\)
<=> \(\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+10}{2000}+1\right)-\left(\frac{x+11}{1999}+1\right)-\left(\frac{x+12}{1998}+1=0\right)\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
<=>\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> x+2010 = 0 vì \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\ne0\)
<=> x = -2010
a) \(\Leftrightarrow x+\frac{3}{4}x=\frac{1}{3}+\frac{5}{4}\)
\(\Leftrightarrow\frac{7}{4}x=\frac{19}{12}\Leftrightarrow x=\frac{19}{12}:\frac{7}{4}=\frac{19}{21}\)
b) \(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x=\frac{1}{4}+\frac{1}{5}\Leftrightarrow\frac{1}{6}x=\frac{9}{20}\Leftrightarrow x=\frac{9}{20}:\frac{1}{6}=\frac{27}{10}\)
.a, \(\frac{x+1}{999}+\frac{x+2}{998}=\frac{x+3}{997}+\frac{x+4}{996}\)
.\(< =>\frac{x+1}{999}+1+\frac{x+2}{998}+1=\frac{x+3}{997}+1+\frac{x+4}{996}+1\)
.\(< =>\frac{x+1}{999}+\frac{999}{999}+\frac{x+2}{998}+\frac{998}{998}=\frac{x+3}{997}+\frac{997}{997}+\frac{x+4}{996}+\frac{996}{996}\)
.\(< =>\frac{x+1+999}{999}+\frac{x+2+998}{998}=\frac{x+3+997}{997}+\frac{x+4+996}{996}\)
.\(< =>\frac{x+1000}{999}+\frac{x+1000}{998}-\frac{x+1000}{997}-\frac{x+1000}{996}=0\)
.\(< =>\left(x+1000\right)\left(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\right)=0\)
.Do \(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\ne0\)
.Suy ra \(x+1000=0\Leftrightarrow x=-1000\)
.b, \(\frac{x+1}{1001}+\frac{x+2}{1002}=\frac{x+3}{1003}+\frac{x+4}{1004}\)
.\(< =>\frac{x+1}{1001}-1+\frac{x+2}{1002}-1=\frac{x+3}{1003}-1+\frac{x+4}{1004}-1\)
.\(< =>\frac{x+1}{1001}-\frac{1001}{1001}+\frac{x+2}{1002}-\frac{1002}{1002}=\frac{x+3}{1003}-\frac{1003}{1003}+\frac{x+4}{1004}-\frac{1004}{1004}\)
.\(< =>\frac{x+1-1001}{1001}+\frac{x+2-1002}{1002}=\frac{x+3-1003}{1003}+\frac{x+4-1004}{1004}\)
.\(< =>\frac{x-1000}{1001}+\frac{x+1000}{1002}-\frac{x+1000}{1003}-\frac{x+1000}{1004}=0\)
.\(< =>\left(x-1000\right)\left(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\right)=0\)
.Do \(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\ne0\)
.Suy ra \(x-1000=0\Leftrightarrow x=1000\)
a, \(\frac{2}{5}+\frac{1}{4}\times x=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{4}\times x=\frac{3}{10}-\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}\times x=\frac{-1}{10}\)
\(\Leftrightarrow x=\frac{-1}{10}\div\frac{1}{4}\)
\(\Leftrightarrow x=\frac{-2}{5}\)
Vậy \(x=\frac{-2}{5}\)
b, \(\frac{2}{3}+\frac{2}{3}\div x=\frac{4}{15}\)
\(\Leftrightarrow\frac{2}{3}\div x=\frac{4}{15}-\frac{2}{3}\)
\(\Leftrightarrow\frac{2}{3}\div x=\frac{4}{15}-\frac{2}{3}\)
\(\Leftrightarrow\frac{2}{3}\div x=\frac{-2}{5}\)
\(\Leftrightarrow x=\frac{2}{3}\div\frac{-2}{5}\)
\(\Leftrightarrow\frac{-5}{3}\)
Vậy \(x=\frac{-5}{3}\)
c, \(2\times\left|\frac{2}{3}-x\right|+\frac{1}{4}=\frac{3}{4}\)
\(\Leftrightarrow2\times\left|\frac{2}{3}-x\right|=\frac{3}{4}-\frac{1}{4}\)
\(\Leftrightarrow2\times\left|\frac{2}{3}-x\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{2}{3}-x\right|=\frac{1}{2}\div2\)
\(\Leftrightarrow\left|\frac{2}{3}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2}{3}-x=\frac{1}{4}\\\frac{2}{3}-x=\frac{-1}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{12}\\x=\frac{11}{12}\end{cases}}\)
Vậy \(x\in\left\{\frac{5}{12};\frac{11}{12}\right\}\)
d, \(3\times\left|\frac{5}{4}-x\right|-\frac{1}{8}=\frac{1}{4}\)
\(\Leftrightarrow3\times\left|\frac{5}{4}-x\right|=\frac{1}{4}+\frac{1}{8}\)
\(\Leftrightarrow3\times\left|\frac{5}{4}-x\right|=\frac{3}{8}\)
\(\Leftrightarrow\left|\frac{5}{4}-x\right|=\frac{3}{8}\div3\)
\(\Leftrightarrow\left|\frac{5}{4}-x\right|=\frac{1}{8}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{5}{4}-x=\frac{1}{8}\\\frac{5}{4}-x=\frac{-1}{8}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{9}{8}\\x=\frac{11}{8}\end{cases}}\)
Vậy \(x\in\left\{\frac{9}{8};\frac{11}{8}\right\}\)
\(\frac{3}{4}+\left(-2-\frac{2}{3}x\right)=3\left(x-\frac{1}{2}\right)\)
\(\Leftrightarrow\frac{3}{4}-2-\frac{2}{3}x=3x-\frac{3}{2}\)
\(\Leftrightarrow\frac{3}{4}-\frac{8}{4}-\frac{2}{3}x=3x-\frac{6}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{2}{3}x-\frac{9}{3}x=0\Leftrightarrow\frac{1}{4}-\frac{11x}{3}=0\)
\(\Leftrightarrow\frac{3}{12}-\frac{44x}{12}=0\)Khử mẫu : \(3-44x=0\Leftrightarrow x=\frac{3}{44}\)