Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x-\frac{2}{5}=\frac{5}{7}\)
\(x=\frac{2}{5}+\frac{5}{7}\)
\(x=\frac{14}{35}+\frac{25}{35}=\frac{39}{35}\)
b)
\(\frac{-2}{5}x=\frac{4}{15}\)
\(x=\frac{4}{15}:-\frac{2}{5}\)
\(x=\frac{4}{15}\cdot-\frac{5}{2}=-\frac{2}{3}\)
c) \(2x\left(x-\frac{1}{7}\right)=2x^2-\frac{2x}{7}\)
d) \(\frac{1}{2}+\frac{3}{4}x=\frac{1}{4}\)
\(\frac{3}{4}x=\frac{1}{4}-\frac{1}{2}\)
\(\frac{3}{4}x=-\frac{1}{4}\)
\(x=-\frac{1}{4}\cdot\frac{4}{3}=-\frac{1}{3}\)
f) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{5}\)
\(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{5}=\frac{31}{60}\)
\(x=\frac{31}{60}-\frac{2}{5}=\frac{7}{60}\)
a, \(\frac{2}{5}+\frac{1}{4}\times x=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{4}\times x=\frac{3}{10}-\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}\times x=\frac{-1}{10}\)
\(\Leftrightarrow x=\frac{-1}{10}\div\frac{1}{4}\)
\(\Leftrightarrow x=\frac{-2}{5}\)
Vậy \(x=\frac{-2}{5}\)
b, \(\frac{2}{3}+\frac{2}{3}\div x=\frac{4}{15}\)
\(\Leftrightarrow\frac{2}{3}\div x=\frac{4}{15}-\frac{2}{3}\)
\(\Leftrightarrow\frac{2}{3}\div x=\frac{4}{15}-\frac{2}{3}\)
\(\Leftrightarrow\frac{2}{3}\div x=\frac{-2}{5}\)
\(\Leftrightarrow x=\frac{2}{3}\div\frac{-2}{5}\)
\(\Leftrightarrow\frac{-5}{3}\)
Vậy \(x=\frac{-5}{3}\)
c, \(2\times\left|\frac{2}{3}-x\right|+\frac{1}{4}=\frac{3}{4}\)
\(\Leftrightarrow2\times\left|\frac{2}{3}-x\right|=\frac{3}{4}-\frac{1}{4}\)
\(\Leftrightarrow2\times\left|\frac{2}{3}-x\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{2}{3}-x\right|=\frac{1}{2}\div2\)
\(\Leftrightarrow\left|\frac{2}{3}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2}{3}-x=\frac{1}{4}\\\frac{2}{3}-x=\frac{-1}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{12}\\x=\frac{11}{12}\end{cases}}\)
Vậy \(x\in\left\{\frac{5}{12};\frac{11}{12}\right\}\)
d, \(3\times\left|\frac{5}{4}-x\right|-\frac{1}{8}=\frac{1}{4}\)
\(\Leftrightarrow3\times\left|\frac{5}{4}-x\right|=\frac{1}{4}+\frac{1}{8}\)
\(\Leftrightarrow3\times\left|\frac{5}{4}-x\right|=\frac{3}{8}\)
\(\Leftrightarrow\left|\frac{5}{4}-x\right|=\frac{3}{8}\div3\)
\(\Leftrightarrow\left|\frac{5}{4}-x\right|=\frac{1}{8}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{5}{4}-x=\frac{1}{8}\\\frac{5}{4}-x=\frac{-1}{8}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{9}{8}\\x=\frac{11}{8}\end{cases}}\)
Vậy \(x\in\left\{\frac{9}{8};\frac{11}{8}\right\}\)
\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)
\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)
\(=\frac{7}{2}-2\)
\(=\frac{7}{2}-\frac{4}{2}\)
\(=\frac{3}{2}\)
\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)
\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)
\(=\frac{3}{7}.\left(2-9\right)\)
\(=\frac{3}{7}.\left(-7\right)\)
\(=-3\)
\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )
1
a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)
= \(3\cdot25:\frac{5}{4}\)
= \(3\cdot\left(25:\frac{5}{4}\right)\)
=\(3\cdot20\)
=60
b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)
=\(\frac{3}{7}\cdot\left(-7\right)\)
=\(-3\)
c) =
a) \(\left|2x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\orbr{\begin{cases}2x+\frac{3}{4}=\frac{1}{2}\\2x+\frac{3}{4}=\frac{-1}{2}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{1}{2}-\frac{3}{4}\\2x=\frac{-1}{2}-\frac{3}{4}\end{cases}}\) => \(\orbr{\begin{cases}2x=\frac{-1}{4}\\2x=\frac{-5}{4}\end{cases}}\) => \(\orbr{\begin{cases}x=\frac{-1}{8}\\x=\frac{-5}{8}\end{cases}}\)
Vậy \(x=\left\{\frac{-1}{8},\frac{-5}{8}\right\}\)
b) \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{2\frac{1}{4}}\)= \(\frac{3x}{2,7}=\frac{\frac{1}{4}}{\frac{9}{4}}\)
=> \(3x.\frac{9}{4}=2,7.\frac{1}{4}\)=> \(\frac{27x}{4}=\frac{27}{40}\)
\(27x.40=27.4\)
\(1080.x=108\)
\(x=\frac{1}{10}\)
Vậy \(x=\frac{1}{10}\)
c) \(\left|x-1\right|+4=6\)
\(\left|x-1\right|=6-4\)
\(\left|x-1\right|=2\)
\(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy \(x=\left[3,-1\right]\)
d) \(\frac{x}{3}=\frac{y}{5}=>\frac{y}{5}=\frac{x}{3}=>\frac{y-x}{5-3}=\frac{24}{2}=12\)
e) \(\left(x^2-3\right)^2=16\)
\(\left(x^2-3\right)^2=4^2\)\(=>x^2-3=4\)
\(x^2=7=>x=\sqrt{7}\)
Vậy \(x=\sqrt{7}\)
f) \(\frac{3}{4}+\frac{2}{5}x=\frac{29}{60}\)
\(\frac{2}{5}x=\frac{29}{60}-\frac{3}{4}\)
\(\frac{2}{5}x=-\frac{4}{15}\)
\(x=-\frac{4}{15}:\frac{2}{5}=-\frac{4}{15}.\frac{5}{2}=-\frac{2}{3}\)
Vậy \(x=-\frac{2}{3}\)
g) \(\left(-\frac{1}{3}\right)^3.x=\frac{1}{81}\)
\(\left(-\frac{1}{27}\right).x=\frac{1}{81}\)
\(x=\left(-\frac{1}{27}\right):\frac{1}{81}=\left(-\frac{1}{27}\right).81=-3\)
Vậy \(x=-3\)
k)\(\frac{3}{4}-\frac{2}{5}x=\frac{29}{60}\)
\(\frac{2}{5}x=\frac{3}{4}-\frac{29}{60}\)
\(\frac{2}{5}x=\frac{4}{15}\)
\(x=\frac{2}{5}-\frac{4}{15}=>x=\frac{2}{15}\)
Vậy \(x=\frac{2}{15}\)
I) \(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
\(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}\)
\(\frac{3}{5}x=\frac{5}{14}\)
\(x=\frac{5}{14}:\frac{3}{5}=\frac{5}{14}.\frac{5}{3}=\frac{25}{42}\)
Vậy \(x=\frac{25}{42}\)
.a, \(\frac{x+1}{999}+\frac{x+2}{998}=\frac{x+3}{997}+\frac{x+4}{996}\)
.\(< =>\frac{x+1}{999}+1+\frac{x+2}{998}+1=\frac{x+3}{997}+1+\frac{x+4}{996}+1\)
.\(< =>\frac{x+1}{999}+\frac{999}{999}+\frac{x+2}{998}+\frac{998}{998}=\frac{x+3}{997}+\frac{997}{997}+\frac{x+4}{996}+\frac{996}{996}\)
.\(< =>\frac{x+1+999}{999}+\frac{x+2+998}{998}=\frac{x+3+997}{997}+\frac{x+4+996}{996}\)
.\(< =>\frac{x+1000}{999}+\frac{x+1000}{998}-\frac{x+1000}{997}-\frac{x+1000}{996}=0\)
.\(< =>\left(x+1000\right)\left(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\right)=0\)
.Do \(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\ne0\)
.Suy ra \(x+1000=0\Leftrightarrow x=-1000\)
.b, \(\frac{x+1}{1001}+\frac{x+2}{1002}=\frac{x+3}{1003}+\frac{x+4}{1004}\)
.\(< =>\frac{x+1}{1001}-1+\frac{x+2}{1002}-1=\frac{x+3}{1003}-1+\frac{x+4}{1004}-1\)
.\(< =>\frac{x+1}{1001}-\frac{1001}{1001}+\frac{x+2}{1002}-\frac{1002}{1002}=\frac{x+3}{1003}-\frac{1003}{1003}+\frac{x+4}{1004}-\frac{1004}{1004}\)
.\(< =>\frac{x+1-1001}{1001}+\frac{x+2-1002}{1002}=\frac{x+3-1003}{1003}+\frac{x+4-1004}{1004}\)
.\(< =>\frac{x-1000}{1001}+\frac{x+1000}{1002}-\frac{x+1000}{1003}-\frac{x+1000}{1004}=0\)
.\(< =>\left(x-1000\right)\left(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\right)=0\)
.Do \(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\ne0\)
.Suy ra \(x-1000=0\Leftrightarrow x=1000\)
cảm ơn