Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}x + \left( { - \frac{1}{5}} \right) = \frac{{ - 4}}{{15}}\\x = \frac{{ - 4}}{{15}} + \frac{1}{5}\\x = \frac{{ - 4}}{{15}} + \frac{3}{{15}}\\x = \frac{{ - 1}}{{15}}\end{array}\)
Vậy \(x = \frac{{ - 1}}{{15}}\).
b)
\(\begin{array}{l}3,7 - x = \frac{7}{{10}}\\x = 3,7 - \frac{7}{{10}}\\x = \frac{{37}}{{10}} - \frac{7}{{10}}\\x=\frac{30}{10}\\x = 3\end{array}\)
Vậy \(x = 3\).
c)
\(\begin{array}{l}x.\frac{3}{2} = 2,4\\x.\frac{3}{2} = \frac{{12}}{5}\\x = \frac{{12}}{5}:\frac{3}{2}\\x = \frac{{12}}{5}.\frac{2}{3}\\x = \frac{8}{5}\end{array}\)
Vậy \(x = \frac{8}{5}\)
d)
\(\begin{array}{l}3,2:x = - \frac{6}{{11}}\\\frac{{16}}{5}:x = - \frac{6}{{11}}\\x = \frac{{16}}{5}:\left( { - \frac{6}{{11}}} \right)\\x = \frac{{16}}{5}.\frac{{ - 11}}{6}\\x = \frac{{ - 88}}{{15}}\end{array}\)
Vậy \(x = \frac{{ - 88}}{{15}}\).
a)
\(\begin{array}{l}\frac{2}{9}:x + \frac{5}{6} = 0,5\\\frac{2}{9}:x = \frac{1}{2} - \frac{5}{6}\\\frac{2}{9}:x = \frac{3}{6} - \frac{5}{6}\\\frac{2}{9}:x = \frac{{ - 2}}{6}\\x = \frac{2}{9}:\frac{{ - 2}}{6}\\x = \frac{2}{9}.\frac{{ - 6}}{2}\\x = \frac{{ - 2}}{3}\end{array}\)
Vậy \(x = \frac{{ - 2}}{3}\).
b)
\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - \frac{4}{3}\\x - \frac{2}{3} = \frac{9}{{12}} - \frac{{16}}{{12}}\\x - \frac{2}{3} = \frac{{ - 7}}{{12}}\\x = \frac{{ - 7}}{{12}} + \frac{2}{3}\\x = \frac{{ - 7}}{{12}} + \frac{8}{{12}}\\x = \frac{1}{12}\end{array}\)
Vậy\(x = \frac{1}{12}\).
c)
\(\begin{array}{l}1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75\\\frac{5}{4}:\left( {x - \frac{2}{3}} \right) = \frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}:\frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}.\frac{4}{3}\\x - \frac{2}{3} = \frac{5}{3}\\x = \frac{5}{3} + \frac{2}{3}\\x = \frac{7}{3}\end{array}\)
Vậy \(x = \frac{7}{3}\).
d)
\(\begin{array}{l}\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\\ - \frac{5}{6}x + \frac{5}{4} = \frac{4}{3}.\frac{3}{2}\\ - \frac{5}{6}x + \frac{5}{4} = 2\\ - \frac{5}{6}x = 2 - \frac{5}{4}\\ - \frac{5}{6}x = \frac{8}{4} - \frac{5}{4}\\ - \frac{5}{6}x = \frac{3}{4}\\x = \frac{3}{4}:\left( { - \frac{5}{6}} \right)\\x = \frac{3}{4}.\frac{{ - 6}}{5}\\x = \frac{{ - 9}}{{10}}\end{array}\)
Vậy \(x = \frac{{ - 9}}{{10}}\).
+) \(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\Leftrightarrow\frac{17}{3}x+\frac{5}{3}=\frac{9}{2}\Leftrightarrow\frac{17}{3}x=\frac{17}{6}\Leftrightarrow x=\frac{1}{2}\)
+) \(\frac{x}{27}=\frac{-2}{9}\Leftrightarrow x=\frac{-2}{9}.27=-6\)
+) \(\left|x+1,5\right|=2\Leftrightarrow\orbr{\begin{cases}x+1,5=2\\x+1,5=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,5\\x=-3,5\end{cases}}}\)
+) \(A=\left|x-1004\right|-\left|x+1003\right|\)
Ta có BĐT \(\left|x\right|-\left|y\right|\le\left|x-y\right|,\)dấu "=" xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)
Áp dụng: \(A=\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=\left|-2007\right|=2007\)
Vậy \(maxA=2007\Leftrightarrow\left(x-1004\right)\left(x+1003\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)
a, \(\frac{2}{5}+\frac{1}{4}\times x=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{4}\times x=\frac{3}{10}-\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}\times x=\frac{-1}{10}\)
\(\Leftrightarrow x=\frac{-1}{10}\div\frac{1}{4}\)
\(\Leftrightarrow x=\frac{-2}{5}\)
Vậy \(x=\frac{-2}{5}\)
b, \(\frac{2}{3}+\frac{2}{3}\div x=\frac{4}{15}\)
\(\Leftrightarrow\frac{2}{3}\div x=\frac{4}{15}-\frac{2}{3}\)
\(\Leftrightarrow\frac{2}{3}\div x=\frac{4}{15}-\frac{2}{3}\)
\(\Leftrightarrow\frac{2}{3}\div x=\frac{-2}{5}\)
\(\Leftrightarrow x=\frac{2}{3}\div\frac{-2}{5}\)
\(\Leftrightarrow\frac{-5}{3}\)
Vậy \(x=\frac{-5}{3}\)
c, \(2\times\left|\frac{2}{3}-x\right|+\frac{1}{4}=\frac{3}{4}\)
\(\Leftrightarrow2\times\left|\frac{2}{3}-x\right|=\frac{3}{4}-\frac{1}{4}\)
\(\Leftrightarrow2\times\left|\frac{2}{3}-x\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{2}{3}-x\right|=\frac{1}{2}\div2\)
\(\Leftrightarrow\left|\frac{2}{3}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{2}{3}-x=\frac{1}{4}\\\frac{2}{3}-x=\frac{-1}{4}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{12}\\x=\frac{11}{12}\end{cases}}\)
Vậy \(x\in\left\{\frac{5}{12};\frac{11}{12}\right\}\)
d, \(3\times\left|\frac{5}{4}-x\right|-\frac{1}{8}=\frac{1}{4}\)
\(\Leftrightarrow3\times\left|\frac{5}{4}-x\right|=\frac{1}{4}+\frac{1}{8}\)
\(\Leftrightarrow3\times\left|\frac{5}{4}-x\right|=\frac{3}{8}\)
\(\Leftrightarrow\left|\frac{5}{4}-x\right|=\frac{3}{8}\div3\)
\(\Leftrightarrow\left|\frac{5}{4}-x\right|=\frac{1}{8}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{5}{4}-x=\frac{1}{8}\\\frac{5}{4}-x=\frac{-1}{8}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{9}{8}\\x=\frac{11}{8}\end{cases}}\)
Vậy \(x\in\left\{\frac{9}{8};\frac{11}{8}\right\}\)
a)
\(\begin{array}{l}x + \frac{1}{2} = - \frac{1}{3}\\x = - \frac{1}{3} - \frac{1}{2}\\x = - \frac{2}{6} - \frac{3}{6}\\x = \frac{{ - 5}}{6}\end{array}\)
Vậy \(x = \frac{{ - 5}}{6}\).
b)
\(\begin{array}{l}\left( { - \frac{2}{7}} \right) + x = - \frac{1}{4}\\x = - \frac{1}{4} - \left( { - \frac{2}{7}} \right)\\x = - \frac{1}{4} + \frac{2}{7}\\x = - \frac{7}{{28}} + \frac{8}{{28}}\\x = \frac{1}{{28}}\end{array}\)
Vậy \(x = \frac{1}{{28}}\).
a) Ta có:
\(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\\ \Rightarrow x+\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-\frac{1}{4}\\ \Rightarrow x>\frac{2}{3}+\frac{4}{9}-\frac{1}{4}-\frac{1}{6}-\frac{4}{15}\\ \Rightarrow x>\left(\frac{6}{9}+\frac{4}{9}\right)-\left(\frac{15}{60}+\frac{10}{60}+\frac{16}{60}\right)\)
\(x>\frac{10}{9}-\frac{41}{60}\\ x>\frac{200-123}{180}\Rightarrow x>\frac{77}{180}\)
b) Bất đẳng thức kép
\(4-1\frac{1}{3}< x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
có nghĩa là ta phải có hai bất đẳng thức đồng thời:
\(x+\frac{1}{5}>4-1\frac{1}{3}\) và \(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
Ta tìm các giá trị của x cần thỏa mãn bất đẳng thức thứ nhất:
\(x+\frac{1}{5}>4-1\frac{1}{3}\Rightarrow x>4-1\frac{1}{3}-\frac{1}{5}\\ \Rightarrow x>\frac{37}{15}\)
Từ bất đẳng thức thứ hai
\(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\Rightarrow x< \frac{86}{7}-\frac{27}{8}-\frac{1}{5}\\ \Rightarrow x< \frac{2439}{280}.\)
Như vậy các số hữu tỉ x cần thỏa mãn:
\(\frac{37}{15}< x< \frac{2439}{280}\)
a) \(x-\frac{2}{5}=\frac{5}{7}\)
\(x=\frac{2}{5}+\frac{5}{7}\)
\(x=\frac{14}{35}+\frac{25}{35}=\frac{39}{35}\)
b)
\(\frac{-2}{5}x=\frac{4}{15}\)
\(x=\frac{4}{15}:-\frac{2}{5}\)
\(x=\frac{4}{15}\cdot-\frac{5}{2}=-\frac{2}{3}\)
c) \(2x\left(x-\frac{1}{7}\right)=2x^2-\frac{2x}{7}\)
d) \(\frac{1}{2}+\frac{3}{4}x=\frac{1}{4}\)
\(\frac{3}{4}x=\frac{1}{4}-\frac{1}{2}\)
\(\frac{3}{4}x=-\frac{1}{4}\)
\(x=-\frac{1}{4}\cdot\frac{4}{3}=-\frac{1}{3}\)
f) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{5}\)
\(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{5}=\frac{31}{60}\)
\(x=\frac{31}{60}-\frac{2}{5}=\frac{7}{60}\)
.a, \(\frac{x+1}{999}+\frac{x+2}{998}=\frac{x+3}{997}+\frac{x+4}{996}\)
.\(< =>\frac{x+1}{999}+1+\frac{x+2}{998}+1=\frac{x+3}{997}+1+\frac{x+4}{996}+1\)
.\(< =>\frac{x+1}{999}+\frac{999}{999}+\frac{x+2}{998}+\frac{998}{998}=\frac{x+3}{997}+\frac{997}{997}+\frac{x+4}{996}+\frac{996}{996}\)
.\(< =>\frac{x+1+999}{999}+\frac{x+2+998}{998}=\frac{x+3+997}{997}+\frac{x+4+996}{996}\)
.\(< =>\frac{x+1000}{999}+\frac{x+1000}{998}-\frac{x+1000}{997}-\frac{x+1000}{996}=0\)
.\(< =>\left(x+1000\right)\left(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\right)=0\)
.Do \(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\ne0\)
.Suy ra \(x+1000=0\Leftrightarrow x=-1000\)
.b, \(\frac{x+1}{1001}+\frac{x+2}{1002}=\frac{x+3}{1003}+\frac{x+4}{1004}\)
.\(< =>\frac{x+1}{1001}-1+\frac{x+2}{1002}-1=\frac{x+3}{1003}-1+\frac{x+4}{1004}-1\)
.\(< =>\frac{x+1}{1001}-\frac{1001}{1001}+\frac{x+2}{1002}-\frac{1002}{1002}=\frac{x+3}{1003}-\frac{1003}{1003}+\frac{x+4}{1004}-\frac{1004}{1004}\)
.\(< =>\frac{x+1-1001}{1001}+\frac{x+2-1002}{1002}=\frac{x+3-1003}{1003}+\frac{x+4-1004}{1004}\)
.\(< =>\frac{x-1000}{1001}+\frac{x+1000}{1002}-\frac{x+1000}{1003}-\frac{x+1000}{1004}=0\)
.\(< =>\left(x-1000\right)\left(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\right)=0\)
.Do \(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\ne0\)
.Suy ra \(x-1000=0\Leftrightarrow x=1000\)
cảm ơn