\(|x^2-2x-1|=14\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|x^2-2x-1\right|=14\)

\(\Rightarrow\orbr{\begin{cases}x^2-2x-1=14\\x^2-2x-1=-14\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x^2-2x=15\\x^2-2x=-13\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x\in\varnothing\end{cases}}}\)

\(\Rightarrow x=-3\)

\(ok\)

a: \(\Leftrightarrow4\left(-5x+6\right)\left(3x-7\right)=30x-240-6x-84\)

\(\Leftrightarrow4\left(-15x^2+35x+18x-42\right)=24x-324\)

\(\Leftrightarrow-60x^2+212x-168-24x+324=0\)

\(\Leftrightarrow-60x^2+188x+156=0\)

\(\Leftrightarrow15x^2-47x-39=0\)

\(\text{Δ​}=\left(-47\right)^2-4\cdot15\cdot\left(-39\right)=4549>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{47-\sqrt{4549}}{30}\\x_2=\dfrac{47+\sqrt{4549}}{30}\end{matrix}\right.\)

b: \(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6\)

\(\Leftrightarrow17x+16=7\)

hay x=-9/17

c: \(\Leftrightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

=>4x+13=11

hay x=-1/2

13 tháng 11 2017

a)

\(\dfrac{H}{x^2+9x+14}=\dfrac{1-x}{x+2}\)

\(\Rightarrow\dfrac{H}{x^2+7x+2x+14}=\dfrac{1-x}{x+2}\)

\(\Rightarrow\dfrac{H}{\left(x+7\right)\left(x+2\right)}=\dfrac{1-x}{x+2}\)

\(\Rightarrow\left(x+2\right)\left(x+7\right)\left(1-x\right)=H.\left(x+2\right)\)

\(\Rightarrow H=\left(x+7\right)\left(1-x\right)\)

b)

\(\dfrac{2x^2-5x+2}{x^2+5x-14}=\dfrac{2x-1}{H}\)

\(\Rightarrow\dfrac{2x^2-4x-x+2}{x^2+7x-2x-14}=\dfrac{2x-1}{H}\)

\(\Rightarrow\dfrac{\left(2x-1\right)\left(x-2\right)}{\left(x+7\right)\left(x-2\right)}=\dfrac{2x-1}{H}\)

\(\Rightarrow\left(2x-1\right)\left(x-2\right).H=\left(2x-1\right)\left(x+7\right)\left(x-2\right)\)

\(\Rightarrow H=x+7\)

18 tháng 8 2018

\( \left(x-1\right)\left(x+3\right)+\left(x-2\right)-2x^2=14\)

<=>  \(x^2+2x-3+x-2-2x^2=14\)

<=>  \(-x^2+3x-5=14\)

<=>   \(-x^2+3x-19=0\)

<=>  \(x^2-3x+19=0\)  vô lý

Vậy pt vô nghiệm

26 tháng 11 2017

Bài 1: 

x3+y3=152=> (x+y)(x2-xy+y2)=152

 Mà x2-xy+y2=19

=> 19(x+y)=152=> x+y=8

Ta cũng có x-y=2

=> x=5;y=3

Bài 2: 

x2+4y2+z2=2x+12y-4z-14

=> x2+4y2+z2-2x-12y+4z+14=0

=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0

=> (x+1)2+(2y-3)2+(z+2)2=0

=> (x+1)2=(2y-3)2=(z+2)2=0

=> x=-1;y=3/2;z=-2

Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)

29 tháng 9 2017

Câu a : Mình ko biết làm .

Câu b : Bạn làm rồi khỏi làm nữa

Câu c :

\(x\left(2x-7\right)-4x+14=0\)

\(x\left(2x-7\right)-\left(4x-14\right)=0\)

\(x\left(2x-7\right)-2\left(2x-7\right)=0\)

\(\left(2x-7\right)\left(x-2\right)=0\)

\(\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)

Vậy \(x=\dfrac{7}{2}\) \(x=2\)

Câu d :

\(\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\left(x-8\right)\left(3x+2\right)=0\)

\(\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x=8\) \(x=-\dfrac{2}{3}\)

29 tháng 9 2017

Vậy em xin câu a ^^

a, \(6x^3+x^2+x+1=0\)

\(\Rightarrow6x^3+3x^2-2x^2-x+2x+1=0\)

\(\Rightarrow3x^2\left(2x+1\right)-x\left(2x+1\right)+\left(2x+1\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(3x^2-x+1\right)=0\) (1)

Ta có: \(3x^2-x+1=3x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{12}+\dfrac{11}{12}\)

\(=3x\left(x-\dfrac{1}{6}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{6}\right)+\dfrac{11}{12}\)

\(=3\left(x-\dfrac{1}{6}\right)^2+\dfrac{11}{12}>0\) (2)

Từ (1) và (2) suy ra \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)

Chúc bạn học tốt!!!

4 tháng 6 2019

a, \(2x-\frac{1}{2}=\frac{2x+1}{4}-\frac{1-2x}{8}\)

\(\Leftrightarrow\frac{1}{2}\left(4x-1\right)=\frac{1}{8}\left(6x+1\right)\)

\(\Leftrightarrow4\left(4x-1\right)=6x+1\)

\(\Leftrightarrow10x=5\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy x = \(\frac{1}{2}\)

b, \(\frac{x-3}{13}+\frac{x-3}{14}=\frac{x-3}{15}+\frac{x-3}{16}\)

\(\Leftrightarrow\frac{x-3}{13}+\frac{x-3}{14}-\frac{x-3}{15}-\frac{x-3}{16}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy x = 3 

4 tháng 6 2019

\(\frac{x-3}{13}+\frac{x-3}{14}=\frac{x-3}{15}+\frac{x-3}{16}\)

\(\Leftrightarrow\frac{x-3}{13}+\frac{x-3}{14}-\frac{x-3}{15}-\frac{x-3}{16}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=0+3\)

\(\Leftrightarrow x=3\)