\(\frac{1}{\sqrt{2x-3}}\)+ \(\frac{4}{\sqrt{y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

Áp dụng Cosi

\(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}\ge2\)

\(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}\ge4\)

\(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}\ge8\)

=> VT >/ VP

Dấu ' = ' xảy ra khi 2x -3 =1=>x =2

                             y -2 = 4 => y =6

                              3z -1 =16 => z =17/3

30 tháng 12 2015

Tick đi rồi mk nói cho kq đúng 100%

1 tháng 1 2016

Áp dụng định luật cosi \(\frac{A+B}{2}\)\(\geq\)\(\sqrt{A.B}\) sẽ ra kq là 14

13 tháng 7 2016

Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))

Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)

\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)

\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)

\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)

Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)

13 tháng 7 2016

Phần đặt ẩn a,b,c bạn bỏ đi nhé ^^

25 tháng 2 2017

Đật 3 cái mẫu bên VT lần lượt là x,y,z rồi áp dụng C-S dạng engel

6 tháng 2 2017

Để dễ nhìn ta đặt \(\hept{\begin{cases}\sqrt{2x-3}=a\\\sqrt{y-2}=b\\\sqrt{3z-1}=c\end{cases}\left(a,b,c\ge0\right)}\)

Vậy BĐT đầu tương đương \(T=\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c\)

Áp dụng BĐT C-S dạng Engel ta có:

\(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}=\frac{1^2}{a}+\frac{2^2}{b}+\frac{4^2}{c}\ge\frac{\left(1+2+4\right)^2}{a+b+c}=\frac{49}{a+b+c}\)

Tiếp tục dùng AM-GM ta có: \(VT\ge\frac{49}{a+b+c}+\left(a+b+c\right)\ge2\sqrt{\frac{49}{a+b+c}\cdot\left(a+b+c\right)}=2\sqrt{49}=14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=1\\b=2\\c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}\)

6 tháng 2 2017

nhìn qua thì chắc AM-GM+Cauchy-schwarz chắc thế :)