Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x-8\sqrt{x}-9=0\)
<=> \(\left(\sqrt{x}\right)^2-2\sqrt{x}.4+4^2-25=0\)
<=> \(\left(\sqrt{x}-4\right)^2-5^2=0\)
<=> \(\left(\sqrt{x}-4-5\right)\left(\sqrt{x}-4+5\right)=0\)
<=> \(\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)
Mà \(\sqrt{x}\ge0\)<=> \(\sqrt{x}+1\ge1>0\)
=> \(\sqrt{x}-9=0\)
<=> \(\sqrt{x}=9\)
<=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
b/ Bạn coi lại đề giùm mình nhé.
\(a,\Leftrightarrow\left(x-9\right)^2-2\left(x-9\right)+1=0\\ \Leftrightarrow\left(x-9-1\right)^2=0\Leftrightarrow x=10\\ b,Sửa:49x^2-14x\sqrt{5}+5=0\\ \Leftrightarrow\left(7x-\sqrt{5}\right)^2=0\Leftrightarrow x=\dfrac{\sqrt{5}}{7}\)
a: \(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-4}\cdot\dfrac{\sqrt{x}+2}{x+16}=\dfrac{1}{\sqrt{x}-2}\)
b: Khi x=9 thì B=1/(3-2)=1
Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)
\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)
Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)
\(\Leftrightarrow x^3=18+3x\)
\(\Leftrightarrow x^3-3x-18=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)
Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)
\(\Rightarrow x-3=0\Leftrightarrow x=3\)
Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.
KL: Đề sai !
Đặt: \(\sqrt{x}=a\)
\(Taco:a^2-8a-9=0\Leftrightarrow a\left(a-8\right)-9=0\Leftrightarrow a\left(a-8\right)=9=1.9\)
\(\Leftrightarrow a=9\Leftrightarrow x=9^2=81\)
\(x-8\sqrt{x}-9=0\)
\(\Leftrightarrow\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=9\Leftrightarrow x=81\\\sqrt{x}=-1\left(loại\right)\end{cases}}\)
Vậy x = 81
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 = 4
<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
Vậy S = { 5 ; 1 }
b) x2 - 9 = 0
<=> x2 = 9
<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy S = { 3 ; -3 }
c) x( x - 2x ) - x2 - 8 = 0
<=> x2 - 2x2 - x2 - 8 = 0
<=> -2x2 - 8 = 0
<=> -2x2 = 8
<=> x2 = -4 ( vô lí )
<=> x = \(\varnothing\)
Vậy S = { \(\varnothing\)}
d) 2x( x - 1 ) - 2x2 + x - 5 = 0
<=> 2x2 - 2x - 2x2 + x - 5 = 0
<=> -x - 5 = 0
<=> -x = 5
<=> x = -5
Vậy S = { -5 }
e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0
<=> x2 - 3x - ( x2 - x - 2 ) = 0
<=> x2 - 3x - x2 + x + 2 = 0
<=> - 2x + 2 = 0
<=> -2x = -2
<=> x = 1
Vậy S = { 1 }
f) x( 3x - 1 ) - 3x2 - 7x = 0
<=> 3x2 - x - 3x2 - 7x = 0
<=> -8x = 0
<=> x = 0
Vậy S = { 0 }
\(\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.4+16\right]-25=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)^2-25=0\)
\(\Leftrightarrow\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)
Mà\(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}-9=0\Rightarrow\sqrt{x}=9\Rightarrow x=81\)
Vậy\(x=81\)
\(x-8\sqrt{x}-9=0\)
\(-8\sqrt{x}=-x+9\)
\(64x=81-18x+x^2\)
\(64x-81+18x-x^2=0\)
\(82x-81-x^2=0\)
\(-x^2+82x-81=0\)
\(x^2-82x+81=0\)
\(x=\frac{-\left(-82\right)\pm\sqrt{\left(-82\right)^2-4\times1\times81}}{2\times1}\)
\(x=\frac{82\pm\sqrt{6724-324}}{2}\)
\(x=\frac{82\pm\sqrt{6400}}{2}\)
\(x=\frac{82\pm80}{2}\)
\(x=\frac{82+80}{2}\)
\(x=\frac{82-80}{2}\)
\(x=81\)
\(x=1\)
\(81-8\sqrt{81}-9=0\)
\(1-8\sqrt{1}-9=0\)
\(0=0\)
\(-16=0\)
\(x=81\)
\(x\ne1\)
\(x=81\)