K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

\(\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.4+16\right]-25=0\)

\(\Leftrightarrow\left(\sqrt{x}-4\right)^2-25=0\)

\(\Leftrightarrow\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)

\(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}-9=0\Rightarrow\sqrt{x}=9\Rightarrow x=81\)

Vậy\(x=81\)

26 tháng 9 2017

\(x-8\sqrt{x}-9=0\)

\(-8\sqrt{x}=-x+9\)

\(64x=81-18x+x^2\)

\(64x-81+18x-x^2=0\)

\(82x-81-x^2=0\)

\(-x^2+82x-81=0\)

\(x^2-82x+81=0\)

\(x=\frac{-\left(-82\right)\pm\sqrt{\left(-82\right)^2-4\times1\times81}}{2\times1}\)

\(x=\frac{82\pm\sqrt{6724-324}}{2}\)

\(x=\frac{82\pm\sqrt{6400}}{2}\)

\(x=\frac{82\pm80}{2}\)

\(x=\frac{82+80}{2}\)

\(x=\frac{82-80}{2}\)

\(x=81\)

\(x=1\)

\(81-8\sqrt{81}-9=0\)

\(1-8\sqrt{1}-9=0\)

\(0=0\)

\(-16=0\)

\(x=81\)

\(x\ne1\)

\(x=81\)

5 tháng 8 2018

a/ \(x-8\sqrt{x}-9=0\)

<=> \(\left(\sqrt{x}\right)^2-2\sqrt{x}.4+4^2-25=0\)

<=> \(\left(\sqrt{x}-4\right)^2-5^2=0\)

<=> \(\left(\sqrt{x}-4-5\right)\left(\sqrt{x}-4+5\right)=0\)

<=> \(\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)

Mà \(\sqrt{x}\ge0\)<=> \(\sqrt{x}+1\ge1>0\)

=> \(\sqrt{x}-9=0\)

<=> \(\sqrt{x}=9\)

<=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

b/ Bạn coi lại đề giùm mình nhé.

6 tháng 11 2021

\(a,\Leftrightarrow\left(x-9\right)^2-2\left(x-9\right)+1=0\\ \Leftrightarrow\left(x-9-1\right)^2=0\Leftrightarrow x=10\\ b,Sửa:49x^2-14x\sqrt{5}+5=0\\ \Leftrightarrow\left(7x-\sqrt{5}\right)^2=0\Leftrightarrow x=\dfrac{\sqrt{5}}{7}\)

a: \(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-4}\cdot\dfrac{\sqrt{x}+2}{x+16}=\dfrac{1}{\sqrt{x}-2}\)

b: Khi x=9 thì B=1/(3-2)=1

23 tháng 8 2018

26 tháng 8 2020

Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)

Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)

\(\Leftrightarrow x^3=18+3x\)

\(\Leftrightarrow x^3-3x-18=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)

Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)

\(\Rightarrow x-3=0\Leftrightarrow x=3\)

Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.

KL: Đề sai !

5 tháng 12 2018

Đặt: \(\sqrt{x}=a\)

\(Taco:a^2-8a-9=0\Leftrightarrow a\left(a-8\right)-9=0\Leftrightarrow a\left(a-8\right)=9=1.9\)

\(\Leftrightarrow a=9\Leftrightarrow x=9^2=81\)

5 tháng 12 2018

\(x-8\sqrt{x}-9=0\)

\(\Leftrightarrow\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=9\Leftrightarrow x=81\\\sqrt{x}=-1\left(loại\right)\end{cases}}\)

Vậy x = 81

21 tháng 7 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 = 4

<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

Vậy S = { 5 ; 1 }

b) x2 - 9 = 0

<=> x2 = 9

<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy S = { 3 ; -3 }

c) x( x - 2x ) - x2 - 8 = 0

<=> x2 - 2x2 - x2 - 8 = 0

<=> -2x2 - 8 = 0

<=> -2x2 = 8

<=> x2 = -4 ( vô lí )

<=> x = \(\varnothing\)

Vậy S = { \(\varnothing\)}

21 tháng 7 2020

d) 2x( x - 1 ) - 2x2 + x - 5 = 0

<=> 2x2 - 2x - 2x2 + x - 5 = 0

<=> -x - 5 = 0

<=> -x = 5

<=> x = -5

Vậy S = { -5 }

e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0 

<=> x2 - 3x - ( x2 - x - 2 ) = 0

<=> x2 - 3x - x2 + x + 2 = 0

<=> - 2x + 2 = 0

<=> -2x = -2

<=> x = 1

Vậy S = { 1 }

f) x( 3x - 1 ) - 3x2 - 7x = 0

<=> 3x2 - x - 3x2 - 7x = 0

<=> -8x = 0

<=> x = 0

Vậy S = { 0 }