Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(x-9\right)^2-2\left(x-9\right)+1=0\\ \Leftrightarrow\left(x-9-1\right)^2=0\Leftrightarrow x=10\\ b,Sửa:49x^2-14x\sqrt{5}+5=0\\ \Leftrightarrow\left(7x-\sqrt{5}\right)^2=0\Leftrightarrow x=\dfrac{\sqrt{5}}{7}\)
\(\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.4+16\right]-25=0\)
\(\Leftrightarrow\left(\sqrt{x}-4\right)^2-25=0\)
\(\Leftrightarrow\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)
Mà\(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}-9=0\Rightarrow\sqrt{x}=9\Rightarrow x=81\)
Vậy\(x=81\)
\(x-8\sqrt{x}-9=0\)
\(-8\sqrt{x}=-x+9\)
\(64x=81-18x+x^2\)
\(64x-81+18x-x^2=0\)
\(82x-81-x^2=0\)
\(-x^2+82x-81=0\)
\(x^2-82x+81=0\)
\(x=\frac{-\left(-82\right)\pm\sqrt{\left(-82\right)^2-4\times1\times81}}{2\times1}\)
\(x=\frac{82\pm\sqrt{6724-324}}{2}\)
\(x=\frac{82\pm\sqrt{6400}}{2}\)
\(x=\frac{82\pm80}{2}\)
\(x=\frac{82+80}{2}\)
\(x=\frac{82-80}{2}\)
\(x=81\)
\(x=1\)
\(81-8\sqrt{81}-9=0\)
\(1-8\sqrt{1}-9=0\)
\(0=0\)
\(-16=0\)
\(x=81\)
\(x\ne1\)
\(x=81\)
a: \(B=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-4}\cdot\dfrac{\sqrt{x}+2}{x+16}=\dfrac{1}{\sqrt{x}-2}\)
b: Khi x=9 thì B=1/(3-2)=1
a/ x2-2x-8=0
x2-2x+4x-8=0
x(x-2)+4(x-2)=0
(x-2)(x+4)=0
Th1: x-2=0 <=>x=2
Th2: x+4=0 <=> x=-4
b/ sorry bạn mình ko viết được căn bậc
x căn bậc x -8=0
x căn bậc x =8
căn bậc x bình nhân căn bậc x=8
căn bậc x3=8
căn bậc x3=23
căn bậc x=2
<=> x=22=4
c/ áp dụng hằng đẳng thức số 3:
(x-2)2-(x+3)2=8
(x-2-x-3)(x-2+x+3)=8
-5(2x+1)=8
2x+1=8/-5
2x=-13/5
x=-13/10
nhớ t ick cho mình nha
đk: x > = 0
\(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
<=> \(x-2\sqrt{x}+1-x+4\sqrt{x}=11\)
<=> \(2\sqrt{x}=11\)
<=> \(\sqrt{x}=\frac{11}{2}\)
<=> x = 121/4
b) 4x2 - 4 = 0
<=> 4(x - 1)(x + 1) = 0
<=> x = 1 hoặc x = -1
Trả lời:
a, \(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\sqrt{x}+1+4\sqrt{x}-\left(\sqrt{x}\right)^2=11\)
\(\Leftrightarrow2\sqrt{x}+1=11\)
\(\Leftrightarrow2\sqrt{x}=10\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=\sqrt{25}\)
\(\Rightarrow x=25\)
Vậy x = 25
b, \(4x^2-4=0\)
\(\Leftrightarrow\)\(4\left(x^2-1\right)=0\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy x = 1; x = -1
a: \(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
Bài 2 :
a, Ta có : \(x^2-5x+4< 0\)
\(\Leftrightarrow x^2-x-4x+4< 0\)
\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)< 0\)
Vậy ...
b, Ta có : \(\dfrac{x-3}{x+1}< 1\)
\(\Leftrightarrow\dfrac{x-3}{x+1}-\dfrac{x+1}{x+1}< 0\)
\(\Leftrightarrow\dfrac{x-3-x-1}{x+1}=\dfrac{-4}{x+1}< 0\)
Thấy - 4 < 0
Nên để \(-\dfrac{4}{x+1}< 0\) <=> x + 1 > 0 ( TH A, B trái dấu )
Vậy ...
a/ \(x-8\sqrt{x}-9=0\)
<=> \(\left(\sqrt{x}\right)^2-2\sqrt{x}.4+4^2-25=0\)
<=> \(\left(\sqrt{x}-4\right)^2-5^2=0\)
<=> \(\left(\sqrt{x}-4-5\right)\left(\sqrt{x}-4+5\right)=0\)
<=> \(\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)
Mà \(\sqrt{x}\ge0\)<=> \(\sqrt{x}+1\ge1>0\)
=> \(\sqrt{x}-9=0\)
<=> \(\sqrt{x}=9\)
<=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
b/ Bạn coi lại đề giùm mình nhé.