Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + x2 = 0
=> x(1 + x) = 0
=> x = 0 hoặc x + 1 = 0
=> x = 0 hoặc x = -1
vậy_
mk biến đổi về pt tích, sau đó bạn tính nốt nhé:
b) \(x+1-\left(x+1\right)^2=0\)
<=> \(\left(x+1\right)\left(1-x-1\right)=0\)
<=> \(-x\left(x+1\right)=0\)
c) \(15y\left(4y-9\right)-3\left(4y-9\right)=0\)
<=> \(3\left(4y-9\right)\left(5y-1\right)=0\)
d) \(8\left(25z+7\right)-27z\left(25z+7\right)=0\)
<=> \(\left(25z+7\right)\left(8-27z\right)=0\)
a) \(x+x^2=0\Leftrightarrow x\left(1+x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
b) \(x+1-\left(x+1\right)^2=0\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)
\(\Leftrightarrow-x\left(x+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
c) \(15y\left(4y-9\right)-3\left(4y-9\right)=0\Leftrightarrow\left(15y-3\right)\left(4y-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{15}=\dfrac{1}{5}\\x=\dfrac{9}{4}\end{matrix}\right.\)
d) \(8\left(25z+7\right)-27z\left(25z+7\right)=0\Leftrightarrow\left(8-27z\right)\left(25z+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}z=\dfrac{8}{27}\\z=\dfrac{-7}{25}\end{matrix}\right.\)
chẳng đời nào lại có cái bài như thế này như thế ko cần tìm x nữa đâu
Có mà
\(\sqrt{x}=3\)
tìm x
ĐKXĐ: \(x\ge0\)
Đặt \(\sqrt{x}=a\)
\(\Rightarrow a^2-2a-1=0\)
\(\Rightarrow\left(a-1\right)^2=2\)
\(\Rightarrow\orbr{\begin{cases}a-1=\sqrt{2}\\a-1=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}a=\sqrt{2}+1\\a=-\sqrt{2}+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}\sqrt{x}=\sqrt{2}+1\\\sqrt{x}=-\sqrt{2}+1< 0\left(v\text{ô}l\text{ý}\right)\end{cases}}}\Leftrightarrow x=\left(\sqrt{2}+1\right)^2=3+2.\sqrt{2}\)Vậy \(x=3+2.\sqrt{2}\)
P/S: Không chắc lắm
\(5-9x^2=0\)
\(\Leftrightarrow9x^2=5\)
\(\Leftrightarrow x^2=\dfrac{5}{9}\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{9}}\\x=-\sqrt{\dfrac{5}{9}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}}{3}\\x=-\dfrac{\sqrt{5}}{3}\end{matrix}\right.\)
\(x^2+x+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow x+\dfrac{1}{2}=0\Rightarrow x=-\dfrac{1}{2}\)
Học tốt nha<3
a, \(x^2=\left(\sqrt{3}\right)^2=3\)
b, \(x^2=\left(\sqrt{8}\right)^2=8\)
a) \(x^2=\left(\sqrt{3}\right)^2=3\)
b) \(x^2=\left(\sqrt{8}\right)^2=8\)
a/ \(x-8\sqrt{x}-9=0\)
<=> \(\left(\sqrt{x}\right)^2-2\sqrt{x}.4+4^2-25=0\)
<=> \(\left(\sqrt{x}-4\right)^2-5^2=0\)
<=> \(\left(\sqrt{x}-4-5\right)\left(\sqrt{x}-4+5\right)=0\)
<=> \(\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)
Mà \(\sqrt{x}\ge0\)<=> \(\sqrt{x}+1\ge1>0\)
=> \(\sqrt{x}-9=0\)
<=> \(\sqrt{x}=9\)
<=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
b/ Bạn coi lại đề giùm mình nhé.
Đặt: \(\sqrt{x}=a\)
\(Taco:a^2-8a-9=0\Leftrightarrow a\left(a-8\right)-9=0\Leftrightarrow a\left(a-8\right)=9=1.9\)
\(\Leftrightarrow a=9\Leftrightarrow x=9^2=81\)
\(x-8\sqrt{x}-9=0\)
\(\Leftrightarrow\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=9\Leftrightarrow x=81\\\sqrt{x}=-1\left(loại\right)\end{cases}}\)
Vậy x = 81