\(x-2\sqrt{x}-1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

ĐKXĐ: \(x\ge0\)

Đặt \(\sqrt{x}=a\)

\(\Rightarrow a^2-2a-1=0\)

\(\Rightarrow\left(a-1\right)^2=2\)

\(\Rightarrow\orbr{\begin{cases}a-1=\sqrt{2}\\a-1=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}a=\sqrt{2}+1\\a=-\sqrt{2}+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}\sqrt{x}=\sqrt{2}+1\\\sqrt{x}=-\sqrt{2}+1< 0\left(v\text{ô}l\text{ý}\right)\end{cases}}}\Leftrightarrow x=\left(\sqrt{2}+1\right)^2=3+2.\sqrt{2}\)Vậy \(x=3+2.\sqrt{2}\)

P/S: Không chắc lắm

24 tháng 7 2017

\(5-9x^2=0\)

\(\Leftrightarrow9x^2=5\)

\(\Leftrightarrow x^2=\dfrac{5}{9}\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{9}}\\x=-\sqrt{\dfrac{5}{9}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}}{3}\\x=-\dfrac{\sqrt{5}}{3}\end{matrix}\right.\)

\(x^2+x+\dfrac{1}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)

\(\Rightarrow x+\dfrac{1}{2}=0\Rightarrow x=-\dfrac{1}{2}\)

Học tốt nha<3

24 tháng 7 2017

\(5-9x^2=0\\ 9x^2=5\\ x^2=\dfrac{5}{9}\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-\sqrt{5}}{3}\\x=\dfrac{\sqrt{5}}{3}\end{matrix}\right.\)

\(x^2+x+\dfrac{1}{4}=0\\ \left(x+\dfrac{1}{2}\right)^2=0\\ x+\dfrac{1}{2}=0\\ x=\dfrac{-1}{2}\)

5 tháng 12 2018

Đặt: \(\sqrt{x}=a\)

\(Taco:a^2-8a-9=0\Leftrightarrow a\left(a-8\right)-9=0\Leftrightarrow a\left(a-8\right)=9=1.9\)

\(\Leftrightarrow a=9\Leftrightarrow x=9^2=81\)

5 tháng 12 2018

\(x-8\sqrt{x}-9=0\)

\(\Leftrightarrow\left(\sqrt{x}-9\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=9\Leftrightarrow x=81\\\sqrt{x}=-1\left(loại\right)\end{cases}}\)

Vậy x = 81

8 tháng 8 2018

x + x2 = 0

=> x(1 + x) = 0

=> x = 0 hoặc x + 1 = 0

=> x = 0 hoặc x = -1

vậy_

8 tháng 8 2018

mk biến đổi về pt tích, sau đó bạn tính nốt nhé:

b) \(x+1-\left(x+1\right)^2=0\)

<=> \(\left(x+1\right)\left(1-x-1\right)=0\)

<=> \(-x\left(x+1\right)=0\)

c) \(15y\left(4y-9\right)-3\left(4y-9\right)=0\)

<=> \(3\left(4y-9\right)\left(5y-1\right)=0\)

d) \(8\left(25z+7\right)-27z\left(25z+7\right)=0\)

<=> \(\left(25z+7\right)\left(8-27z\right)=0\)

8 tháng 8 2018

a) \(x+x^2=0\Leftrightarrow x\left(1+x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

b) \(x+1-\left(x+1\right)^2=0\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)

\(\Leftrightarrow-x\left(x+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

c) \(15y\left(4y-9\right)-3\left(4y-9\right)=0\Leftrightarrow\left(15y-3\right)\left(4y-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{15}=\dfrac{1}{5}\\x=\dfrac{9}{4}\end{matrix}\right.\)

d) \(8\left(25z+7\right)-27z\left(25z+7\right)=0\Leftrightarrow\left(8-27z\right)\left(25z+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}z=\dfrac{8}{27}\\z=\dfrac{-7}{25}\end{matrix}\right.\)

13 tháng 7 2015

a, \(x^2=\left(\sqrt{3}\right)^2=3\)

b, \(x^2=\left(\sqrt{8}\right)^2=8\)

13 tháng 7 2015

a) \(x^2=\left(\sqrt{3}\right)^2=3\)

b) \(x^2=\left(\sqrt{8}\right)^2=8\)

12 tháng 7 2015

x=\(\sqrt{3}\approx1,7320508\)

x=\(\sqrt{8}\approx2,828427125\)

12 tháng 7 2015

chẳng đời nào lại có cái bài như thế này  như thế ko cần tìm x nữa đâu 

Có mà 

 \(\sqrt{x}=3\)

tìm x

6 tháng 4 2018

Bài 2:

a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)

\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{2}{2x+1}\)

b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)

\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)

c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)

+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)

+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)

Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)

28 tháng 6 2019

     \(x^4-2x^3-2x^2+3x+2=0\)

\(\Leftrightarrow x^4-2x^3-2x^2+4x-x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3\right)-\left(2x^2-4x\right)-\left(x-2\right)=0\)

\(\Leftrightarrow x^3\left(x-2\right)-2x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-2x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-x-x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^3-x\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^2-x\right)\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x-1\right)=0\)

Đến đây ez r