Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Leftrightarrow3x^2-3x-3x^2+2x=5\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy phương trình có nghiệm x = - 5 .
\(\Leftrightarrow x^4-x^3-2x^2-x^3+x^2+2x-x^2+x+2=0\)
\(\Leftrightarrow x^2\left(x^2-x-2\right)-x\left(x^2-x-2\right)-1\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x^2-x-1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-x-2=0\end{matrix}\right.\)
Ta có: \(VT=\left(x^4+x^3\right)-\left(3x^3+3x^2\right)+\left(x^2+x\right)+2\left(x+1\right)\)
\(=x^3\left(x+1\right)-3x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-2x^2-x^2+2x-x+2\right)\)
\(=\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)-\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2-x-1\right)\)
Do vậy pt tương đương với \(\left(x+1\right)\left(x-2\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) . Giải cái ngoặc cuối cùng: \(x^2-x-1=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Lần sau đăng thì chia thành nhiều câu hỏi nhé
\(16^2-9.\left(x+1\right)^2=0\)
\(16^2-\text{ }\left[3.\left(x+1\right)\right]^2=0\)
\(\left[16-3.\left(x+1\right)\right].\left[16+3\left(x+1\right)\right]=0\)
\(\left[16-3x-3\right]\left[16+3x+3\right]=0\)
\(\left[13-3x\right].\left[19+3x\right]=0\)
\(\Rightarrow\orbr{\begin{cases}13-3x=0\\19+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=13\\3x=-19\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=-\frac{19}{3}\end{cases}}}\)
KL:..............................
\(2x-2=8-3x\)
\(\Leftrightarrow\)\(2x+3x=8+2\)
\(\Leftrightarrow\)\(5x=10\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
\(x^2-3x+1=x+x^2\)
\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)
\(\Leftrightarrow\)\(-4x=-1\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy...
mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))
câu 5: đặt x2 = t, khi đó:
\(-x^4+2x^2+1=0\) (5)
\(\Leftrightarrow-t^2+2t+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\\t=1-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=1+\sqrt{2}\\x^2=1-\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{1+\sqrt{2}}\\x=-\sqrt{1+\sqrt{2}}\\x\in R\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{1+\sqrt{2}}\\x=-\sqrt{1+\sqrt{2}}\end{matrix}\right.\)
Vậy tập nghiệm phương trình (5) là \(S=\left\{-\sqrt{1+\sqrt{2}};\sqrt{1+\sqrt{2}}\right\}\)
a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x\right)^2-5^2-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(-2\right).\left(2x-5\right)=0\)
\(\Leftrightarrow2x-5=0\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
a,\(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(4x^2-25\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)^2-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x-5-2x-7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(-12\right)=0\)
\(\Rightarrow2x-5=0\)
\(\Rightarrow2x=5\)
\(\Rightarrow x=\dfrac{5}{2}\)
\(b,2x^3+3x^2+2x+3=0\)
\(\Rightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Rightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Rightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=0\\x^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-3\\x^2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)
\(c,x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)^3+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right).x^3=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x^3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\end{matrix}\right.\)
\(d,x^2\left(x+7\right)-4\left(x+7\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=4\\x=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)
\(x^4-2x^3-2x^2+3x+2=0\)
\(\Leftrightarrow x^4-2x^3-2x^2+4x-x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)-\left(2x^2-4x\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x^3\left(x-2\right)-2x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-x-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3-x\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2-x\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x-1\right)=0\)
Đến đây ez r