\(x^4-2x^3-2x^2+3x+2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

Ta có: \(VT=\left(x^4+x^3\right)-\left(3x^3+3x^2\right)+\left(x^2+x\right)+2\left(x+1\right)\)

\(=x^3\left(x+1\right)-3x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3-2x^2-x^2+2x-x+2\right)\)

\(=\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)-\left(x-2\right)\right]\)

\(=\left(x+1\right)\left(x-2\right)\left(x^2-x-1\right)\)

Do vậy pt tương đương với \(\left(x+1\right)\left(x-2\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) . Giải cái ngoặc cuối cùng: \(x^2-x-1=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)

NV
28 tháng 6 2019

\(\Leftrightarrow x^4-x^3-2x^2-x^3+x^2+2x-x^2+x+2=0\)

\(\Leftrightarrow x^2\left(x^2-x-2\right)-x\left(x^2-x-2\right)-1\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x-1\right)\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-x-2=0\end{matrix}\right.\)

28 tháng 6 2019

     \(x^4-2x^3-2x^2+3x+2=0\)

\(\Leftrightarrow x^4-2x^3-2x^2+4x-x+2=0\)

\(\Leftrightarrow\left(x^4-2x^3\right)-\left(2x^2-4x\right)-\left(x-2\right)=0\)

\(\Leftrightarrow x^3\left(x-2\right)-2x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-2x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-x-x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^3-x\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x^2-x\right)\left(x+1\right)-\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x-1\right)=0\)

Đến đây ez r

3 tháng 9 2020

Bài này chỉ cần phá ngoặc là xong 

3 tháng 9 2020

a, PT <=> \(-x^3-4x+8=15\)

\(x^3+4x+7=0\)( vô nghiệm )

b, PT <=> \(24x+25=49\)

\(x=1\)

7 tháng 5 2018

3.

a) \(2x+5=20-3x\)

\(\Leftrightarrow2x+3x=20-5\)

\(\Leftrightarrow5x=15\)

\(\Leftrightarrow x=3\)

Vậy \(S=\left\{3\right\}\)

b) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[\left(2x-1\right)+\left(x+3\right)\right]\left[\left(2x-1\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(2x-1+x+3\right)\left(2x-1-x-3\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=4\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{2}{3};4\right\}\)

c) \(\dfrac{5x-4}{2}=\dfrac{16x+1}{7}\)

\(\Leftrightarrow\left(5x-4\right)7=\left(16x+1\right)2\)

\(\Leftrightarrow35x-28=32x+2\)

\(\Leftrightarrow35x-32x=2+28\)

\(\Leftrightarrow2x=30\)

\(\Leftrightarrow x=15\)

Vậy \(S=\left\{15\right\}\)

d) \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Rightarrow\left(2x+1\right)12-\left(x-2\right)18=\left(3-2x\right)24-72x\)

\(\Leftrightarrow24x+12-18x+36=72-48x-72x\)

\(\Leftrightarrow6x+48=72-120x\)

\(\Leftrightarrow6x+120x=72-48\)

\(\Leftrightarrow126x=24\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

Vậy \(S=\left\{\dfrac{4}{21}\right\}\)

17 tháng 7 2018

Lần sau đăng thì chia thành nhiều câu hỏi nhé

\(16^2-9.\left(x+1\right)^2=0\)

\(16^2-\text{ }\left[3.\left(x+1\right)\right]^2=0\)

\(\left[16-3.\left(x+1\right)\right].\left[16+3\left(x+1\right)\right]=0\)

\(\left[16-3x-3\right]\left[16+3x+3\right]=0\)

\(\left[13-3x\right].\left[19+3x\right]=0\)

\(\Rightarrow\orbr{\begin{cases}13-3x=0\\19+3x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=13\\3x=-19\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{13}{3}\\x=-\frac{19}{3}\end{cases}}}\)

KL:..............................

25 tháng 7 2018

Nhiều câu hỏi mà bn ??

28 tháng 3 2018

       \(2x-2=8-3x\)

\(\Leftrightarrow\)\(2x+3x=8+2\)

\(\Leftrightarrow\)\(5x=10\)

\(\Leftrightarrow\)\(x=2\)

Vậy...

         \(x^2-3x+1=x+x^2\)

\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)

\(\Leftrightarrow\)\(-4x=-1\)

\(\Leftrightarrow\)\(x=\frac{1}{4}\)

Vậy...

28 tháng 3 2018

mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))

27 tháng 6 2019

\(x^4-2x^2+9-4x\left(3-x^2\right)=0\)

\(\Leftrightarrow x^4-2x^2+9-12x+4x^3=0\)

\(\Leftrightarrow x^4+6x^3+9x^2-2x^3-12x^2-18x+x^2+6x+9=0\)

\(\Leftrightarrow x^2\left(x^2+6x+9\right)-2x\left(x^2+6x+9\right)+\left(x^2+6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+6x+9\right)\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2\left(x-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

6 tháng 7 2017

câu 5: đặt x2 = t, khi đó:

\(-x^4+2x^2+1=0\) (5)

\(\Leftrightarrow-t^2+2t+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\\t=1-\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=1+\sqrt{2}\\x^2=1-\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{1+\sqrt{2}}\\x=-\sqrt{1+\sqrt{2}}\\x\in R\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{1+\sqrt{2}}\\x=-\sqrt{1+\sqrt{2}}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (5) là \(S=\left\{-\sqrt{1+\sqrt{2}};\sqrt{1+\sqrt{2}}\right\}\)

6 tháng 7 2017

câu 1 có chắc là x bình phương nằm ngoài dấu căn không bạn?

27 tháng 6 2019

-TL:

\(-3x^2+x^4+x^2+9-4x\left(3-x^2\right)=0\) 

\(-(3x^2-x^4)+x^2+9-4x\left(3-x^2\right)=0\) 

\(-x^2\left(3-x^2\right)+x^2+9-4x\left(3-x^2\right)=0\) 

\(\left(3-x^2\right)\left(-x^2-4x\right)+x^2+9=0\) 

vì \(x^2\ge0\forall x\in R\) =>để \(\left(3-x^2\right)\left(-x^2-4x\right)+x^2+9=0\) 

thì\(\left(3-x^2\right)\left(-x^2-4x\right)=-9\) 

TH1:(3-x^2)=-1  và -x^2-4x=9

............

vậy..

hc tốt