![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
\(\Leftrightarrow\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}\)
Vì \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
\(< =>x+\frac{2006}{2007}=0;\frac{2008}{2009}-y=0\)
Nếu trườn hợp cn lại là 2 số đối nhau ( một số âm và 1 số dương ), vì cả 2 số đều có giá trị tuyệt đối nên 2 số phải lớn hơn hoặc bằng 0
\(x+\frac{2006}{2007}=0\) \(\frac{2008}{2009}-y=0\)
\(x=-\frac{2006}{2007}\) \(y=\frac{2008}{2009}\)
Vậy x = \(-\frac{2006}{2007};y=\frac{2008}{2009}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Với mọi \(x;y\in R\) ta có: \(2017\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\ge0\)
mà \(2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\le0\)
\(\Rightarrow2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
b) Với mọi \(x;y\in R\) ta có: \(\left|5x+1\right|+\left|6y-8\right|\ge0\)
mà \(\left|5x+1\right|+\left|6y-8\right|\le0\)
\(\Rightarrow\left|5x+1\right|+\left|6y-8\right|=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=\dfrac{4}{3}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}D=5x^{10}-y^{15}+2007\\\left(x+1\right)^{2006}+\left(y-1\right)^{2008}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}\ge0\forall x\\\left(y-1\right)^{2008}\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^{2006}+\left(x-1\right)^{2008}\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}=0\\\left(x-1\right)^{2008}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
Thay vào biểu thức ta có:
\(D=5.\left(-1\right)^{10}-1^{15}+2007\)
\(D=5-1+2007\)
\(D=2011\)
![](https://rs.olm.vn/images/avt/0.png?1311)
để được tổng =0 thì x + 2006/2007 = 0 và 2008/2009 - y =0
vậy suy ra x + 2006/2007 = 0 ; x = -2006/2007
suy ra 2008/2009 - y = 0 ; y = 2008/2009
Vì \(\left|x+\frac{2006}{2007}\right|\ge0;\left|\frac{2008}{2009}-y\right|\ge0\)
Mà \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
=> \(\hept{\begin{cases}\left|x+\frac{2006}{2007}\right|=0\\\left|\frac{2008}{2009}-y\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}}\)=> \(\hept{\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Leftrightarrow\)\(\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\ne0\)
Nên \(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy \(x=-3\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
1,
Vì \(\left|2x-27\right|^{2007}\ge0;\left(3y+10\right)^{2008}\ge0\)
\(\Rightarrow\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}\ge0\)
Mà \(\left|2x-27\right|^{2007}+\left(3y+10\right)^{2008}=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-27\right|^{2007}=0\\\left(3y+10\right)^{2008}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-10}{3}\end{cases}}}\)
2,
TH1: \(x\ge\frac{3}{5}\)
<=> 2(5x-3)-2x=14
<=> 10x-6-2x=14
<=>8x-6=14
<=>8x=20
<=>x=5/2 (thỏa mãn)
TH2: x < 3/5
<=> 2(3-5x)-2x=14
<=>6-10x-2x=14
<=>6-12x=14
<=>12x=-8
<=>x=-2/3 (thỏa mãn)
Vậy \(x\in\left\{\frac{5}{2};\frac{-2}{3}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vi |x-2007|> hoac bang 0; |x-2008|> hoac bang 0
Nen |x-2007|+|x-2008|=0
=> x-2007=0
x-2008=0
=> x=2007
x=2008