\(^{10}\) -y \(^{15}\) + 2007 biết (x+1)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

\(\left\{{}\begin{matrix}D=5x^{10}-y^{15}+2007\\\left(x+1\right)^{2006}+\left(y-1\right)^{2008}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}\ge0\forall x\\\left(y-1\right)^{2008}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x+1\right)^{2006}+\left(x-1\right)^{2008}\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x+1\right)^{2006}=0\\\left(x-1\right)^{2008}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Thay vào biểu thức ta có:

\(D=5.\left(-1\right)^{10}-1^{15}+2007\)

\(D=5-1+2007\)

\(D=2011\)

24 tháng 9 2023

2023 =))

1 tháng 6 2017

\(\left(x+1\right)^{2006}\ge0;\left(y-1\right)^{2008}\ge0\Rightarrow\left(x+1\right)^{2006}+\left(y-1\right)^{2008}\ge0\)

Dấu "=" xảy ra khi (x+1)2006=0;(y-1)2008=0 <=>x+1=0;y-1=0<=>x=-1;y=1

bạn thay vào A mà tính

9 tháng 10 2016

\(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)

\(\Leftrightarrow\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}\)

9 tháng 10 2016

 

Vì \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)

 \(< =>x+\frac{2006}{2007}=0;\frac{2008}{2009}-y=0\) 

Nếu trườn hợp cn lại là 2 số đối nhau ( một số âm và 1 số dương ), vì cả 2 số đều có giá trị tuyệt đối nên 2 số phải lớn hơn hoặc bằng 0

\(x+\frac{2006}{2007}=0\)                          \(\frac{2008}{2009}-y=0\)

\(x=-\frac{2006}{2007}\)                              \(y=\frac{2008}{2009}\)

Vậy x = \(-\frac{2006}{2007};y=\frac{2008}{2009}\)

17 tháng 3 2017

\(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)

<=>\(\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\)

<=>\(\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}=\dfrac{x-2010}{2007}+\dfrac{x-2010}{2006}\)

<=>\(\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)

<=>\(\left(x-2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\right)=0\)

\(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\) nên x-2010=0 <=>x=2010

17 tháng 3 2017

2010 sai chịu j cx chịu

5 tháng 4 2020

1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)

Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)

Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)

\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)

1. \(A=x^{15}+3x^{14}+5\)

\(A=x^{14}\left(x+3\right)+5\)

\(A=x^{14}+5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)

\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)

\(B=1^{2007}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15\)

\(C=3x\left(7x^2+4x^2-x+8+5\right)\)

\(C=3x\left(0+5\right)\)

\(C=15x\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)

\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

\(D=4x.0+2007\)

\(D=2007\)

18 tháng 12 2018

\(\left(\frac{x-7}{2005}-1\right)+\left(\frac{x-6}{2006}-1\right)=\left(\frac{x-5}{2007}-1\right)+\left(\frac{x-4}{2008}-1\right)\)

\(\Leftrightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}=\frac{x-2012}{2007}+\frac{x-2012}{2008}\)

\(\Leftrightarrow\frac{x-2012}{2005}+\frac{x-2012}{2006}-\frac{x-2012}{2007}-\frac{x-2012}{2008}=0\)

\(\left(x-2012\right).\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)=0\)

\(\text{vì }\left(\frac{1}{2005}+\frac{1}{2006}-\frac{1}{2007}-\frac{1}{2008}\right)\ne0\Rightarrow x-2012=0\Rightarrow x-2012\)

30 tháng 8 2018

a) Ta có:

\(-\dfrac{24}{35}< -\dfrac{24}{30}< -\dfrac{19}{30}\)

\(\Rightarrow x< y\)

b) Ta có:

\(A=\dfrac{2006}{2007}-\dfrac{2007}{2008}+\dfrac{2008}{2009}-\dfrac{2009}{2010}\)

\(A=\left(1-\dfrac{1}{2007}\right)-\left(1-\dfrac{1}{2008}\right)+\left(1-\dfrac{1}{2009}\right)-\left(1-\dfrac{1}{2010}\right)\)

\(A=1-\dfrac{1}{2007}-1+\dfrac{1}{2008}+1-\dfrac{1}{2009}-1+\dfrac{1}{2010}\)

\(A=-\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2010}\)

Ta lại có:

\(B=-\dfrac{1}{2006.2007}-\dfrac{1}{2008.2009}\)

\(B=-\dfrac{1}{2006}+\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\)

=> Dễ dàng thấy A > B

3 tháng 7 2016

\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

\(\Leftrightarrow\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)

\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)

\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)

\(\Leftrightarrow x-2010=0\)

\(\Leftrightarrow x=2010\)

3 tháng 7 2016

\(\Rightarrow\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Rightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\ne0\)
nên \(x-2010=0\Leftrightarrow x=2010\)