Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vi |x-2007|> hoac bang 0; |x-2008|> hoac bang 0
Nen |x-2007|+|x-2008|=0
=> x-2007=0
x-2008=0
=> x=2007
x=2008
Từ điều kiện đề bài ta có:
\(x^2,y^2,z^2\le1\)
Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)
\(\Rightarrow xy\ge0\)
Ta có:
\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)
\(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
\(\Leftrightarrow\begin{cases}x+\frac{2006}{2007}=0\\\frac{2008}{2009}-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-\frac{2006}{2007}\\y=\frac{2008}{2009}\end{cases}\)
Vì \(\left|x+\frac{2006}{2007}\right|+\left|\frac{2008}{2009}-y\right|=0\)
\(< =>x+\frac{2006}{2007}=0;\frac{2008}{2009}-y=0\)
Nếu trườn hợp cn lại là 2 số đối nhau ( một số âm và 1 số dương ), vì cả 2 số đều có giá trị tuyệt đối nên 2 số phải lớn hơn hoặc bằng 0
\(x+\frac{2006}{2007}=0\) \(\frac{2008}{2009}-y=0\)
\(x=-\frac{2006}{2007}\) \(y=\frac{2008}{2009}\)
Vậy x = \(-\frac{2006}{2007};y=\frac{2008}{2009}\)
a) Ta có: \(\hept{\begin{cases}\left|y-1\right|\ge0\forall y\\\left|5-x\right|\ge0\forall x\end{cases}\Rightarrow\left|y-1\right|+\left|5-x\right|\ge0\forall}x;y\)
Mà \(\left|y-1\right|+\left|5-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|y-1\right|=0\\\left|5-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}y-1=0\\5-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=5\end{cases}}}\)
Vậy \(\hept{\begin{cases}y=1\\x=5\end{cases}}\)
b) Ta có: \(\left|y-6\right|\ge0\forall y\)
\(\Rightarrow\left|y-6\right|>0\Leftrightarrow y\ne6\)
\(\Rightarrow\)Để \(\frac{\left|y-6\right|}{x+2}>0\)thì \(\hept{\begin{cases}y\ne6\\x+2>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
Vậy \(\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2>0\Leftrightarrow x\ne0\)
Để \(\frac{x^2-1}{x^2}>0\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne0\end{cases}\Leftrightarrow}x>1}\)
Vậy \(x>1\)
Tham khảo nhé~
Lời giải:
Ta có:
\(A=3\left(\frac{x}{y}+\frac{y}{x}\right)-\left (\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)\)
\(\Leftrightarrow A=3\left ( \frac{x}{y}+\frac{y}{x} \right )-\left ( \frac{x}{y}+\frac{y}{x} \right )^2+2\)
Đặt \(t=\frac{x}{y}+\frac{y}{x}\Rightarrow A=3t-t^2+2\)
Ta cần cm \(A\leq 4\Leftrightarrow 3t-t^2-2\leq 0\)
\(\Leftrightarrow (t-1)(t-2)\geq 0\) \((\star)\)
Xét \(t=\frac{x}{y}+\frac{y}{x}\).
Nếu \(x,y\) cùng dấu thì \(xy>0\Rightarrow t=\frac{x^2+y^2}{xy}=\frac{(x-y)^2}{xy}+2\geq 2\)
\(\Rightarrow (t-1)(t-2)\geq 0\)
Nếu $x,y$ khác dấu thì \(xy<0\Rightarrow t=\frac{x^2+y^2}{xy}=\frac{(x+y)^2}{xy}-2\leq-2\)
\(\Rightarrow (t-1)(t-2)\geq 0\)
Vậy, BĐT \((\star)\) luôn đúng, do đó ta có đpcm.
a)Với mọi \(x;y\in R\) ta có: \(2017\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\ge0\)
mà \(2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}\le0\)
\(\Rightarrow2007\left|2x-y\right|^{2008}+2008\left|y-4\right|^{2007}=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
b) Với mọi \(x;y\in R\) ta có: \(\left|5x+1\right|+\left|6y-8\right|\ge0\)
mà \(\left|5x+1\right|+\left|6y-8\right|\le0\)
\(\Rightarrow\left|5x+1\right|+\left|6y-8\right|=0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=\dfrac{4}{3}\end{matrix}\right.\)