Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vi |x-2007|> hoac bang 0; |x-2008|> hoac bang 0
Nen |x-2007|+|x-2008|=0
=> x-2007=0
x-2008=0
=> x=2007
x=2008
Vì l x +y l >= 0 ; l x - 2,5l > = 0
=> l x +y l + l x - 2,5l >= 0
Để tổng = 0 khi và chỉ khi x - 2,5 = 0 <=> x = 2,5 <=> x = 2,5 <=> x = 2,5
x + y = 0 x = -y 2,5 = -y y = -2,5
VẬy x = 2,5 ; y = -2,5
a) Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0\forall x\in Q\)
\(\left|y+\dfrac{2017}{2018}\right|\ge0\forall y\in Q\)
\(\left|z-2019\right|\ge0\forall x\in Q\)
\(\Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|\ge0\forall x,y,z\in Q\)
Dấu \("="\) xảy ra khi \(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\).
b) Lại có:
\(\left|x-\dfrac{9}{5}\right|\ge0\forall x\in Q\)
\(\left|y+\dfrac{3}{4}\right|\ge0\forall y\in Q\)
\(\left|z+\dfrac{7}{2}\right|\ge0\forall z\in Q\)
\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,zQ\)
Mà theo đề bài:
\(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\forall\)
\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-\dfrac{9}{5}\right|=0\\\left|y+\dfrac{3}{4}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy .....
a) \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\)
Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0;\left|y+\dfrac{2017}{2018}\right|\ge0;\left|z-2019\right|\ge0\)
Để \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\) thì:
\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\)
Vậy............................
b) Ta có: \(\left|x-\dfrac{9}{5}\right|\ge0;\left|y+\dfrac{3}{4}\right|\ge0;\left|z+\dfrac{7}{2}\right|\ge0\)
Mà \(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\) thì:
\(\left|x-\dfrac{9}{5}\right|=\left|y+\dfrac{3}{4}\right|=\left|z+\dfrac{7}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy............................
vì (x-2007)2 >= 0 với mọi x
(y + 3/4)2 >= 0 với mọi y
=> (x-2007)2 + (y + 3/4)2 =0
<=> x=2007 và y=-3/4
Do (x-2007)^2 >= 0 ; (y + 3/4)^2 >= 0
=> (x-2007)^2 + (y + 3/4)^2 = 0
<=>(x-2007)^2 = 0 => x-2007 =0 => x=2007
(y-3/4)^4 = 0 => x-3/4 = 0 => x=3/4