Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
\(\sqrt{x}=7\left(x\ge0\right)\\ \Leftrightarrow x=7^2=49\)
Điều kiện: \(x\ge0\)
\(\Leftrightarrow4\left(x-2\right)=7\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow4x-8=7\sqrt{x}+7\)
\(\Leftrightarrow4x-15=7\sqrt{x}\)
\(\Leftrightarrow\left(4x-15\right)^2=\left(7\sqrt{x}\right)^2\)
\(\Leftrightarrow16x^2-169x+225=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=9\\x_2=\dfrac{25}{16}\end{matrix}\right.\) (nhận).
Thử lại nghiệm của bài toán, ta nhận giá trị x = 9.
Vậy giá trị cần tìm của x là 9.
Bước 1: Nhân đôi cả hai vế của phương trình để loại bỏ dấu chia:
2(x-2)/√(x+1) = 7/4
Bước 2: Bình phương cả hai vế của phương trình:
[2(x-2)/√(x+1)]^2 = (7/4)^2
Bước 3: Tính toán và giải phương trình bậc hai thu được:
16x^2 - 60x + 49 = 0
Bước 4: Giải phương trình bằng công thức:
Δ = b^2 - 4ac = (-60)^2 - 4(16)(49) = 3600 - 3136 = 464
x1 = [60 + √(464)] / 32 ≈ 2.44
x2 = [60 - √(464)] / 32 ≈ 0.45
Vậy, phương trình có hai nghiệm là x1 ≈ 2.44 và x2 ≈ 0.45.
\(a,3\sqrt{x}-7=0\left(dk:x\ge0\right)\\ \Leftrightarrow3\sqrt{x}=7\\ \Leftrightarrow\sqrt{x}=\dfrac{7}{3}\\ \Leftrightarrow x=\dfrac{49}{9}\left(tmdk\right)\)
Vậy \(S=\left\{\dfrac{49}{9}\right\}\)
\(b,\sqrt{x-2}+\sqrt{4x-8}=3\left(dk:x\ge2\right)\\ \Leftrightarrow\sqrt{x-2}+\sqrt{4\left(x-2\right)}=3\\ \Leftrightarrow\sqrt{x-2}+2\sqrt{x-2}=3\\ \Leftrightarrow3\sqrt{x-2}=3\\ \Leftrightarrow\sqrt{x-2}=1\\ \Leftrightarrow x-2=1\\ \Leftrightarrow x=3\left(tmdk\right)\)
Vậy \(S=\left\{3\right\}\)
a: =>3*căn x=7
=>căn x=7/3
=>x=49/9
b: =>3*căn x-2=3
=>căn x-2=1
=>x-2=1
=>x=3
Điều kiện: x \(\ge\)-1
\(\sqrt{7+\sqrt{2+\sqrt{x+1}}}=3\\ \Leftrightarrow\sqrt{2+\sqrt{x+1}}=2\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\left(tm\right)\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{x^2}=7\)
\(\Leftrightarrow\left|x\right|=7\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
b) \(\sqrt{\left(x-2020\right)^2}=10\)
\(\Leftrightarrow\left|x-2020\right|=10\)
\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)
c) đk: \(x\ge2\)
\(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)
\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)
\(\Leftrightarrow12\sqrt{x-2}=x+4\)
\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow x^2-136x+304=0\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)
d) đk: \(x\ge-1\)
\(\sqrt{25x+25}-2\sqrt{64x+64}=7\)
\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)
\(\Leftrightarrow-11\sqrt{x+1}=7\)
Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)
=> pt vô nghiệm
√x2 = 7 ⇔ |x| = 7
⇔ x1 = 7 và x2 = -7