\(\sqrt{7+\sqrt{2+\sqrt{x+1}}}=3 \)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
3 tháng 8 2023

Điều kiện: x \(\ge\)-1

\(\sqrt{7+\sqrt{2+\sqrt{x+1}}}=3\\ \Leftrightarrow\sqrt{2+\sqrt{x+1}}=2\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\left(tm\right)\)

10 tháng 10 2019

a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}

\(\sqrt{3x-5}=\sqrt{7x-1}\)

\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)

\(\left|3x-5\right|=\left|7x-1\right|\)

\(3x-5=7x-1\)

\(-4x=4\) => x = -1

14 tháng 8 2019

\(a,x-3\sqrt{x}+2\)

\(=x-3\sqrt{x}+\frac{9}{4}-\frac{1}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2=\left(x+2\right)\left(x-2\right)\)

14 tháng 8 2019

câu a mình nhìn nhầm :

\(=\left(x-1\right)\left(x+2\right)\)

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)

\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}\)

\(=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{2}.\sqrt{2^2-2}=2\)

\(y=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{\frac{2}{3}(9\sqrt{2}-6\sqrt{3}+3\sqrt{5})}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{2}{3}\)

Do đó:

\(E=\frac{1+xy}{x+y}-\frac{1-xy}{x-y}=\frac{1+\frac{4}{3}}{2+\frac{2}{3}}-\frac{1-\frac{4}{3}}{2-\frac{2}{3}}=\frac{9}{8}\)

4 tháng 7 2019

Bài 2 xét x=0 => A =0

xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)

để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)

=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?

4 tháng 7 2019

1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)

\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)

=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

=> M=0

Vậy M=0 

19 tháng 9 2018

a) Ta có:

\(x^3+x^2+x=-\frac{1}{3}\)

\(\Leftrightarrow3x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=-2x^3\)

\(\Leftrightarrow x+1=-\sqrt[3]{2}x\)

\(\Leftrightarrow x=-\frac{1}{\sqrt[3]{2}+1}\) 

19 tháng 9 2018

a , x³ - x² - x = 1/3 
<=> x³ = x² + x + 1/3 
<=> 3x³ = 3(x² + x + 1/3) 
<=> 3x³ = 3x² + 3x + 1 
<=> 3x³ + x³ = x³ + 3x² + 3x + 1 
<=> 4x³ = (x + 1)³ 
<=> \(x\sqrt[3]{4}\) = x + 1 
<=> \(\sqrt[3]{4}x-x=1\)
<=> \(x\left(\sqrt[3]{4}-1\right)=1\)
\(\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)         

b, \(x^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(\Leftrightarrow x^3=4+3x\sqrt[3]{4-5}\)

\(\Leftrightarrow x^3=4-3x\)

\(\Leftrightarrow x^3+3x-4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\right]=0\)

Vì [....] >0

=> x-1=0

=> x=1

mk đang vội nên làm vậy thôi ha . CÓ gì ko hiểu thì nhắn tin vs mk !

b: \(=\dfrac{\left|x\right|+\left|x-2\right|+1}{2x-1}=\dfrac{x+x-2+1}{2x-1}=\dfrac{2x-1}{2x-1}=1\)

c: \(=\left|x-4\right|+\left|x-6\right|\)

=x-4+6-x=2

Bài 1:

a) Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

\(=\left(\sqrt{x}\right)^2-1^2\)

\(=x-1\)

b) Ta có: \(\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}\right)^3+1^3\)

\(=x\sqrt{x}+1\)

c) Ta có: \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

\(=2x-2\sqrt{x}+\sqrt{x}-1\)

\(=2x-\sqrt{x}-1\)

Bài 2: Tìm x

a) Ta có: \(\sqrt{9x^2+6x+1}=3x-2\)

\(\Leftrightarrow\left|3x+1\right|=3x-2\)(*)

Trường hợp 1: \(x\ge\frac{-1}{3}\)

(*)\(\Leftrightarrow3x+1=3x-2\)

\(\Leftrightarrow3x+1-3x+2=0\)

\(\Leftrightarrow3=0\)(vô lý)

Trường hợp 2: \(x< \frac{-1}{3}\)

(*)\(\Leftrightarrow-3x-1=3x-2\)

\(\Leftrightarrow-3x-1-3x+2=0\)

\(\Leftrightarrow-6x+1=0\)

\(\Leftrightarrow-6x=-1\)

hay \(x=\frac{1}{6}\)(loại)

Vậy: \(S=\varnothing\)

b)Trường hợp 1: \(x\ge0\)

Ta có: \(\sqrt{x}-2>0\)

\(\Leftrightarrow\sqrt{x}>2\)

hay x>4(nhận)

Vậy: S={x|x>4}

29 tháng 7 2020

Cảm ơn ạ