Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ mà
bn chia 2 trường hợp
TH1 : 3x - 4 = 6
TH2 : x + 2 = 6
Vậy ....
bn tự tính nha .. bn hỉu hăm ??
\(c,\Rightarrow\left[{}\begin{matrix}-2\left(x+2\right)+\left(4-x\right)=11\left(x< -2\right)\\2\left(x+2\right)+\left(4-x\right)=11\left(-2\le x\le4\right)\\2\left(x+2\right)+\left(x-4\right)=11\left(x>4\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{11}{3}\left(tm\right)\\x=3\left(tm\right)\\x=\dfrac{11}{3}\left(ktm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{3}\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}x+\dfrac{5}{2}=3x+1\\x+\dfrac{5}{2}=-3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{7}{8}\end{matrix}\right.\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
a)\(-x^2\left(x^2-4\right)=-25\left(x^2-4\right)\)
\(\Leftrightarrow-x^2=-25\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm5\)
\(\frac{2}{\left|x-2\right|+2}=\frac{3}{\left|6-3x\right|+1}\)
\(\Leftrightarrow3.\left|x-2\right|+6=2.\left|3.\left(x-2\right)\right|+2\)
\(\Leftrightarrow3.\left|x-2\right|+6=2.3.\left|x-2\right|+2\Leftrightarrow3.\left|x-2\right|+6=6.\left|x-2\right|+2\)
\(\Leftrightarrow4=3.\left|x-2\right|\Leftrightarrow\frac{4}{3}=\left|x-2\right|\)
\(\left|a.b\right|=\left|a\right|.\left|b\right|\)(có quy tắc nhưng có thể cm)
<=> 2*/6-3x/+2=3*/x-2/+6
<=> /12-6x/=/3x-6/+4
x=2 => PT vô nghiệm
x khác 2 => PT <=> 6*/2-x/-3*/x-2/=4
<=> 9*/2-x/=4 => /2-x/=4/9 => \(2-x=\pm\frac{4}{9}=>\orbr{\begin{cases}x_1=\frac{14}{9}\\x_2=\frac{22}{9}\end{cases}}\)
Đáp số: \(\orbr{\begin{cases}x_1=\frac{14}{9}\\x_2=\frac{22}{9}\end{cases}}\)
\(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
=> \(\left|x\left(x-3\right)\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
Vì |x(x - 3)| \(\ge\)0 với mọi x
|(x + 1)(x - 3)| \(\ge\)0 với mọi x
=> Để \(\left|x\left(x-3\right)\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
=> \(\hept{\begin{cases}x\left(x-3\right)=0\\\left(x+1\right)\left(x-3\right)=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\text{ hoặc }x-3=0\\x+1=0\text{ hoặc }x-3=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\text{ hoặc }x=3\\x=-1\text{ hoặc }x=3\end{cases}}\)
Mà x ko thể cùng lúc nhận nhiều giá trị
=> x = 3 thỏa mãn đề bài
Ta có
\(|x+2|\ge0;|x+6|\ge0\)
\(\Rightarrow3x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+2\ge2>0\Leftrightarrow|x+2|=x+2\)
\(\Rightarrow x+6\ge6>0\Leftrightarrow|x+6|=x+6\)
Ta có phương trình sau :
\(\left(x+2\right)+\left(x+6\right)=3x\)
\(\Leftrightarrow2x+8=3x\)
\(\Leftrightarrow x=8\left(t/m\right)\)
Vậy \(x=8\)
\(\left|x+2\right|+\left|x+6\right|=3x\).
Ta có:
\(\left|x+2\right|\ge0\forall x\).
\(\left|x+6\right|\ge0\forall x\).
\(\Rightarrow\left|x+2\right|+\left|x+6\right|\ge0\forall x\).
Do đó \(3x\ge0\Rightarrow x\ge0\)nên \(\left|x+2\right|=x+2\); \(\left|x+6\right|=x+6\). Do đó:
\(\left(x+2\right)+\left(x+6\right)=3x\).
\(\Rightarrow2x+8=3x\).
\(\Rightarrow3x-2x=8\).
\(\Rightarrow x=8\)(thỏa mãn \(x\ge0\)).
Vậy \(x=8\).