Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy câu này dễ mà,động não lên chứ bạn:v
Link______________Link
h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
\(\ge\left|x-1+3-x\right|=2\)
\(\Rightarrow x+1>2\Leftrightarrow x>1\)
Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)
Câu b xét khoảng tương tự với cái link t đưa thôi
hơi bức xúc rồi đó
tau chỉ muốn kiểm tra lại thôi
a)\(-x^2\left(x^2-4\right)=-25\left(x^2-4\right)\)
\(\Leftrightarrow-x^2=-25\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm5\)
a)
\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
1) a) \(\left|7x-5y\right|+\left|2z-3y\right|+\left|xy+yz+xz-2000\right|\ge0\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}7x=5y\\2z=3y\\xy+yz+xz=2000\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}y\\z=\dfrac{3}{2}y\\xy+yz+xz=2000\end{matrix}\right.\)
Ta có: \(xy+yz+xz=2000\)
\(\Rightarrow\dfrac{5}{7}y^2+\dfrac{3}{2}y^2+\dfrac{15}{14}y^2=2000\)
\(\Rightarrow y^2\left(\dfrac{5}{7}+\dfrac{3}{2}+\dfrac{15}{14}\right)=2000\Leftrightarrow\dfrac{23}{7}y^2=2000\)
Tìm \(y\) và suy ra \(x;z\) là được,Bài này nghiệm khá xấu
b) \(\left|3x-7\right|+\left|3x+2\right|+8=\left|7-3x\right|+\left|3x+2\right|+8\ge\left|7-3x+3x+2\right|+8\ge9+8=17\)Dấu "=" xảy ra khi: \(-\dfrac{3}{2}\le x\le\dfrac{7}{3}\)
2) a)Ta có: \(\left\{{}\begin{matrix}\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\\\dfrac{12}{\left|y+1\right|+3}\le\dfrac{12}{3}=4\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}\)
\(\Rightarrow\left|x-5\right|+\left|1-x\right|=\dfrac{12}{\left|y+1\right|+3}=4\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le5\\y=-1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}\left|y+3\right|+5\ge5\\\dfrac{10}{\left(2x-6\right)^2+2}\le\dfrac{10}{2}=5\end{matrix}\right.\)
Mà theo đề bài: \(\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}\)
\(\Rightarrow\left|y+3\right|+5=\dfrac{10}{\left(2x-6\right)^2+2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}y=-3\\x=3\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\\\dfrac{6}{\left|y+3\right|+3}\le\dfrac{6}{3}=2\end{matrix}\right.\)
Mà theo đề bài: \(\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}\)
\(\Rightarrow\left|x-1\right|+\left|3-x\right|=\dfrac{6}{\left|y+3\right|+3}=2\)
\(\Rightarrow\left\{{}\begin{matrix}1\le x\le3\\y=-3\end{matrix}\right.\)
\(c,\Rightarrow\left[{}\begin{matrix}-2\left(x+2\right)+\left(4-x\right)=11\left(x< -2\right)\\2\left(x+2\right)+\left(4-x\right)=11\left(-2\le x\le4\right)\\2\left(x+2\right)+\left(x-4\right)=11\left(x>4\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{11}{3}\left(tm\right)\\x=3\left(tm\right)\\x=\dfrac{11}{3}\left(ktm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{3}\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}x+\dfrac{5}{2}=3x+1\\x+\dfrac{5}{2}=-3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{7}{8}\end{matrix}\right.\)